![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Salt Lake City, UT (SPX) May 30, 2016
Spring snowpack, relied on by ski resorts and water managers throughout the Western United States, may be more vulnerable to a warming climate in coming decades, according to a new University of Utah study. The study, accepted for publication in Geophysical Research Letters, models the year-to-year variability in precipitation and temperature in Utah's Wasatch Mountains and other ranges in the West. Jason Scalzitti, a graduate student in atmospheric sciences, and professors Court Strong and Adam Kochanski found that above a threshold elevation, the amount of spring snowpack is dependent more on the amount of precipitation in a year than the temperature. In other words, whether a year is wet matters more than if it's warm. But below that threshold, temperature matters more. By the end of the century, according to the study, that threshold will move uphill by around 800 feet in the Wasatch and more in the Sierra Nevada, Cascades and parts of the Rocky Mountains. "In the past we've thought mainly about total precipitation as an indicator of how good the ski season's going to be," says Strong. "As we move into the future, especially at elevations below the threshold, temperature increases in importance."
Zooming in on the Wasatch For reference, less than 20 miles separate Salt Lake City, west of the Wasatch, and Park City, Utah, on the east. "You can't even see the Wasatch Range at that resolution," Strong says. Although the coarser grid of global climate models works well in flat topography, such as the Great Plains, the complex terrain of the Intermountain West requires a finer resolution. The researchers employed a technique called "dynamical downscaling," telescoping the model grid into smaller and smaller grid cells in order to capture fine-scale atmospheric processes affecting local climate. In the team's final simulations, the Wasatch Range was modeled at a resolution of about 2.5 miles (4 km) to realistically capture impacts of the range's slopes, canyons, and peaks on the local precipitation pattern. They further accounted for future temperature changes in the Great Salt Lake and evaporation from urban irrigation, both of which contribute moisture to the air. The team projected regional future climate forward to the year 2100 using a business-as-usual carbon emissions scenario that assumes greenhouse gas emissions will continue to increase at the same rate as today.
Crossing the threshold The threshold elevation between precipitation-controlled and temperature-controlled snowpack, currently sits at about 6500 feet (1980 meters) in the Wasatch, near the base elevation of the ski resorts in Park City. In future projections, however, the threshold elevation rises to 7300 feet (2230 meters). In the simulations, modeled threshold elevations rose in mountain ranges all over the West - by about 800 feet (250 meters) in Colorado's Rockies, about 980 feet (300 meters) in California's Sierra Nevada and Washington's Cascades and more than 1400 feet (432 meters) in the middle Rockies of Idaho and Wyoming.
Impacts in peaks and valleys An overall warming trend doesn't mean that every year will be a bad year for low-elevation resorts. But below the threshold elevation, resorts will more susceptible to warm years. "Let's say we get the same amount of storms every year," says study co-author Kochanski. "Above the threshold, the resorts will probably be fine. For the others, even if we have the same precipitation, they may be in trouble because they could get more rain instead of snow, and the snowpack will diminish faster." Although impacts to ski resorts could affect Utah's economy, another implication of diminished snowpack affects nearly all Utahns - shrinking water resources. Melting spring snowpack fills reservoirs, providing water for the residents of the Salt Lake Valley. Spring snowpack amounts are a key indicator for water managers of how much water they'll have available in reservoirs for the coming year. "They look at that as how much water is available in the form of snow to melt and capture in the reservoirs," Strong says. "That will be down in the future. Even if we have the same amount of water coming into the system, it will be melting earlier and faster. If we want to supply that to a growing population, then we need increased storage capacity." Strong and Kochanski say they can now use their model as a framework to continue exploring questions about future climate and snowpack variation, both by exploring the impacts of different carbon emissions scenarios and by looking at mountain ranges around the world, such as the Himalayas.
Related Links University of Utah It's A White Out at TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |