. | . |
Study describes new method to remove nickel from contaminated seawater by Staff Writers Washington DC (SPX) Jan 13, 2017
The same deposit that builds up in many tea kettles or water pipes in areas where calcium-rich water is the norm might be just the (cheap) ticket to rid contaminated seawater of toxic metals. This is according to a research group led by Charlotte Carre of the University of New Caledonia in the French Pacific territory of New Caledonia and published this week in Springer's journal Environmental Chemistry Letters. The researchers dipped electrodes made from galvanized steel into contaminated seawater and ran a weak current through it. Within seven days, up to 24 percent of the nickel it initially contained was trapped in a calcareous build-up of limestone. Nickel mining activities in New Caledonia itself are causing the subsequent pollution of local coastal waters. The remediation of metals brings considerable challenges since these elements, given their chemical properties, can never be degraded but only stabilized. Therefore Carre's research team set out to find an efficient, rapid and inexpensive method by which to remove such toxic metals from the contaminated waters. The research team dipped cheap and commercially available galvanized steel electrodes into nickel-enriched seawater, and allowed a fairly weak electric current to run through it for seven days. According to Carre, the method is relatively inexpensive and easy to use and requires no regular monitoring. "Metal contaminants are attracted and trapped inside a calcareous deposit as long as the structure is connected to a power source," she explains. After seven days, the calcareous deposits that formed on the electrodes were rinsed off with distilled water, and inspected using optical and Raman spectroscopy methods. The deposits were found to consist of the chemical calcium carbonate (CaCO3) made up of equal proportions of aragonite (one of two naturally occurring, crystal forms of calcium carbonate) and brucite (the mineral form of magnesium hydroxide). The method did not significantly deplete the levels of calcium and magnesium in the water. Importantly, though, up to 24 percent of the nickel initially added to the water was trapped within the build-up in this manner. "These ratios are quite high after only seven days," says Carre. After seven days, macroscopic pictures were also taken of the deposit that formed at the surface of the galvanized steel wire. These indicated that the presence of nickel in the solution does not inhibit the formation of the deposit as its thickness remains the same. "Our findings disclose a new and efficient method, called calcareous electrochemical precipitation, which has potential applications to remove toxic metals from contaminated waters," says Carre, who believes it can be used to salvage metals for possible reuse. "It is even conceivable to reuse the galvanized steel electrodes, and to charge the electric circuit using renewable energy." Carre, C. et al. (2017). Calcareous electrochemical precipitation, a new method to trap nickel in seawater, Environmental Chemistry Letters. DOI 10.1007/s10311-016-0602-2
Related Links Springer Our Polluted World and Cleaning It Up
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |