. | . |
Study suggests scientists can use microbial measurements to gauge river flow by Staff Writers Corvallis OR (SPX) Jun 05, 2018
Oregon State University scientists have created a tool that can predict the flow rate of Arctic rivers with a surprising degree of accuracy based on the makeup and abundance of bacteria in the water. Their successful "genohydrology" approach is important because many Arctic rivers are remote and quite rugged, making deployment of flow meters to measure the water dangerous and expensive. They also believe their model has the potential for adaptation to remote rivers around the world. Results of the study have been published in the journal Water Resources Research. "There is a seasonality to the microbial communities in these rivers and as the rivers rise and fall with the seasons, that microbial profile changes," said Byron Crump, an ecologist and biogeochemist with OSU's College of Earth, Ocean, and Atmospheric Sciences and co-author on the study. "These rivers may share some of the same taxa, or types of bacteria, but abundance of the taxa is different and changes with the flow." The researchers focused on six Arctic rivers - the Kolyma, Lena, Mackenzie, Ob, Yenisey and Yukon - and collected water samples from the mouth. After extracting bacterial DNA from the samples, they broke down the genetic code and isolated a segment called the 16S rRNA gene. The segment is found in all bacteria, the scientists say, but contains variations that can be used to identify different bacterial strains. They found 148 strains - also known as operational taxonomic units - nine of which were found in at least five of the six Arctic rivers. "To make predictions of the flow, we looked for which type of bacteria was found in to occur with different levels of discharge," said Stephen Good, a hydrologist with OSU's College of Agricultural Sciences and lead author on the study. "We then looked at the bacteria from the river we wanted to predict and estimated the discharge based on this previously determined relationship between flow and bacteria abundance." Using 33 years of discharge measurements from the rivers, Good and his colleagues created an algorithm that can estimate the flow of the rivers based on the microbial profile. When they tested it against models of river flow based solely on precipitation and watershed area, they found their microbe algorithm was 20 percent more accurate. "If we put flow meters in the river, we'll get better measurements, but that isn't easy to do in many cases," Crump said. "The hydrologic community has needed another method to help predict flow in addition to slope, precipitation, geomorphology and climate, and this algorithm developed by Stephen (Good) appears to be effective - and has the potential to be even better." Good said the next step in the research is to incorporate other factors into his complex model, including precipitation, and to see if the method is applicable to other river systems. "The bacteria that we identified are likely to be found in other rivers, though not necessarily in the same amount, so the model will have to be adjusted," Good said. "We have ongoing work looking at this method throughout western Oregon, and we are already trying to incorporate precipitation into the process."
Making sense of the water supply situation in Cape Town Cape Town, South Africa (SPX) May 30, 2018 Cape Town has come dangerously close to running out of water after 3 years of persistent drought. Tight water usage restrictions have been successful in stalling 'day zero' - when the city's taps will be turned off - until 2019, buying time for authorities to look for more ways to manage the crisis. The JRC, with data from its Global Drought Observatory (GDO), provides analytical reports on the crisis as it develops. Rainfall levels in April, May and June, during the wettest period of ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |