. | . |
Study targets warm water rings that fuel hurricane intensification by Staff Writers Miami FL (SPX) Feb 28, 2017
Last year's devastating category-5 hurricane - Matthew - may be one of many past examples of a tropical storm fueled by massive rings of warm water that exist in the upper reaches of the Caribbean Sea. In a study conducted in the region two years prior to when Matthew's trekked across the Caribbean Sea, the research team in the Upper Ocean Dynamics Laboratory at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science deployed 55 aircraft ocean instruments from the National Oceanographic Atmospheric Administration's WP-3D aircraft. The purpose of the scientific mission was to measure ocean temperature, salinity, and currents to understand the structure of these warm-water eddies. The science team obtained vital information about the physical characteristics within one large warm-water eddy, which likely originated from the North Brazil Current, and analyzed its potential influence on sub-surface ocean conditions during the passage of tropical cyclones. When analyzing the data, they found a barrier layer, an upper ocean feature created by the Amazon-Orinoco freshwater river outflow, that makes mixing in the upper ocean waters less efficient during wind events. This feature, and the fact that warm ocean eddies are known to assist in the intensification of hurricanes due to deep warm thermal layers, lead the researchers to theorize that the barrier layer within a warm ocean eddy may result in an even more favorable upper ocean environment for hurricane intensification. "Our study is important because tropical cyclone intensity forecasts for several past hurricanes over the Caribbean Sea have under-predicted rapid intensification events over warm oceanic features," said Johna Rudzin, a PhD student at the UM Rosenstiel School and lead author of the study. Tropical storms receive energy from their surrounding ocean waters. As a storm moves across the water, it may interact with rings of warm water known as eddies. As the storm moves forward over these eddies, the warm ocean waters below help fuel the storm's intensity through enhanced and sustained heat and moisture fluxes. Similar warm ocean eddies exist in the Gulf of Mexico, a result of their separation from the warm-water Loop Current, are also of interest to the research team involved in this study. Last year, Hurricane Matthew rapidly intensified from a tropical storm to hurricane status as it moved over the Caribbean Sea in the location where a warm ocean eddy exists, and in close proximity to where these measurements were taken for this study two years prior. Matthew continued to intensify to a category-5 storm and into one of the strongest in Atlantic basin history, which made landfall and devastated portions of Haiti, Cuba, and the eastern United States. According to the researchers, to better understand if Matthew's intensification was aided by the warm-water eddies and the residing barrier layer in the Caribbean Sea's upper ocean, more ambient and in-storm upper ocean observations in this basin are needed to improve forecast models for the region. "Upper Ocean Observations in Eastern Caribbean Sea Reveal Barrier Layer within a Warm Core Eddy," as published Feb. 10 in Journal of Geophysical Research: Oceans, DOI: 10.1002/2016JC012339. The study's authors include: Johna E. Rudzin, Lynn "Nick" Shay, Benjamin Jaimes, and Jodi K. Brewster of the UM Rosenstiel School.
Maputo (AFP) Feb 17, 2017 Cyclone Dineo killed seven people, injured 55 and displaced more than 100,000 as it battered southern Mozambique, natural disasters agencies said Friday. The National Institute of Disaster Management said that among the 55 people injured, four were in critical condition. More than 650,000 people in the southeastern African country were also affected since the storm made landfall late Wed ... read more Related Links University of Miami Rosenstiel School of Marine and Atmospheric Science Bringing Order To A World Of Disasters When the Earth Quakes A world of storm and tempest
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |