. | . |
Study weighs deep-sea mining's impact on microbes by Staff Writers East Boothbay ME (SPX) Jan 15, 2020
The essential roles that microbes play in deep-sea ecosystems are at risk from the potential environmental impacts of mining, a new paper in Limnology and Oceanography reports. The study reviews what is known about microbes in these environments and assesses how mining could impact their important environmental roles. "The push for deep-sea mining has really accelerated in the last few years, and it is crucial that policy makers and the industry understand these microbes and the services they provide," said Beth Orcutt, a senior research scientist at Bigelow Laboratory for Ocean Sciences and the lead author of the study. "This paper establishes what we know and suggests next steps for using the best science to evaluate the impacts of this new human activity in the deep sea." Microbes across the seafloor are responsible for essential ecosystem services, from fueling the food web to powering global nutrient cycles. Environments that are promising for mining are also often the sites of globally-important microbial processes and unusual animal communities - and they are very slow to recover from disturbance. Orcutt and her coauthors analyzed four types of deep-sea mineral resources, including the metal-rich rocks that stud underwater mountains and lie on the seafloor. Their findings indicate that the likely impacts of mining on microbial ecosystems vary substantially, from minimal disturbance to the irreversible loss of important ecosystem processes. Hydrothermal vent systems, for example, are particularly sensitive - and valuable. The hot, mineral-rich waters support robust communities of microbes that form the vital base of the food web in these ecosystems. The extreme environmental conditions also foster rich genetic diversity among the microbes, making them promising candidates in the search for anti-cancer drugs and other new biotechnology applications. "These microbes have incredible potential to inspire new solutions to all sorts of medical and technical challenges we face today," said Julie Huber, a scientist from the Woods Hole Oceanographic Institution and co-author of the new study. "But if we damage or destroy a habitat like a hydrothermal vent, we lose the diverse the pool of microbial genetic information from which we can find new enzymes or drugs." Consumer demand for products like smartphones and electric cars is driving the rapidly growing interest in deep-sea mining for metals like cobalt and rare earth elements, which are used in lithium-ion batteries. The International Seabed Authority of the United Nations is working to establish guidelines for countries and contractors to explore the seafloor for minerals, and to eventually mine them. While guidelines for licensed exploration already suggest that site assessments should include how much microbial life is present, the researchers on the new study emphasize that it is equally important to determine what roles the microbes are playing and assess how they would be impacted by mining. "It is important to understand the potential impacts of mining activities to figure out if they should occur and how to manage them if they do," said James Bradley, a scientist at Queen Mary University of London and co-author on the paper. "This is an important conversation between policy makers, industry, and the scientific community, and it's important that we work together to get this right. Once these ecosystems are damaged, they may never fully recover."
Using a robot to deploy robots in remote oceans Norwich UK (SPX) Jan 13, 2020 A researcher at the University of East Anglia (UEA) has helped design a sea-going robot to deploy research equipment in remote and inaccessible ocean locations. The AutoNaut - an unmanned surface vessel - has been specially-adapted to carry and release an underwater Seaglider. The gliders carry a range of sensors to collect data for research on ocean processes that are important for climate. The Seagliders are the same size as a small human diver, but can reach depths of 1000 metres and trav ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |