. Earth Science News .
Summer Storms Could Mean More Dead Zones

These images show how ocean color changes from summer (top) to winter (bottom) in the Gulf of Mexico. They were created from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies about NASA's Aqua satellite. Reds and oranges represent high concentrations of phytoplankton and river sediment.Credit: Goddard SVS
by Staff Writers
Greenbelt MD (SPX) Jul 14, 2008
It's summertime and people are flocking to the coasts around the country. But when summer storms arrive, it's not only beach-goers who are affected; the rains can also have an impact on living creatures far below the ocean surface. Summer storms sweep fertilizers into the rivers and streams and carry them to the shoreline. Once the plumes of storm and river runoff reach the coast, the nutrients in fertilizers can feed tiny ocean plants, called phytoplankton, which can bloom and create "dead zones," or oxygen-deficient areas. Phytoplankton growth utilizes the dissolved oxygen in the water.

Ocean dead zones are regions where water becomes stripped of its dissolved oxygen. These "hypoxic" (low oxygen) and "anoxic" (no oxygen) conditions can prove lethal for many marine species, changing the biology and chemistry of the ocean. In a few places throughout the world, dead zones occur throughout the year, but summer storms can intensify agricultural runoff, resulting in big phytoplankton blooms that trigger the phenomena.

These images show how ocean color changes from summer (top) to winter (bottom) in the Gulf of Mexico. They were created from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies about NASA's Aqua satellite. Reds and oranges represent high concentrations of phytoplankton and river sediment.Credit: Goddard SVS > Summer: larger image > Winter: larger image Phytoplankton are critical to life and are particularly important marine organisms. These microscopic aquatic plants are dispersed throughout the world's oceans. The plants' distribution is driven by available light, the presence of nutrients, and physical processes like ocean circulation and upwelling.

"It's safe to say, with a few exceptions, that all life in the ocean ultimately depends on phytoplankton for its nutrition," notes NASA oceanographer Gene Feldman, Goddard Space Flight Center, Greenbelt, Md.

Under certain conditions, excessive phytoplankton growth can result in a dead zone. Dead zones form when large quantities of organic matter, present from the excessive blooms of phytoplankton at the surface, sink to the bottom. After the organic matter or dead phytoplankton sink, bacteria break the dead or decaying phytoplankton down in a process known as aerobic decomposition, releasing carbon dioxide but absorbing oxygen as they work. The resulting low oxygen conditions can cover expansive areas, killing the oxygen-dependent aquatic species, such as fish, that cannot escape their reach, or driving them out of their habitat.

Summer storms intensify the runoff of fertilizers from lawns and farmland, which seep into the rivers and streams that comprise a local watershed and provide a jolt of nutrients to phytoplankton that live along the shore. Excessive nutrients from human activity are one reason many dead zones occur at the mouth of large rivers and in the bays along the shore.

This image illustrates the flow of water from tributaries in the middle of the United States, down the Mississippi River, and into the Gulf of Mexico. Human activity far from the ocean can have a dramatic impact on life in the sea, as many of the nutrients, fertilizers, and pollutants that impact the health of the Mississippi River and Gulf of Mexico originate far inland. Credit: Goddard Conceptual Image Lab > Larger image For a decade, scientists have used satellite measurements of ocean color to quantify the global amount of phytoplankton and to link its variability to environmental factors. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) allows researchers to measure how blue or how green the ocean is, and from those measurements they determine the amount of phytoplankton in the global oceans. SeaWiFS, a partnership between NASA and industry, is in its tenth year in orbit and measures ocean color, which can be directly related to levels of phytoplankton throughout the world's oceans.

Satellites do not actually "see" dead zones, as satellites cannot monitor what happens at the bottom of the ocean. Satellites can monitor the distribution and abundance of phytoplankton and other materials in the global oceans at the ocean's surface, including conditions that may lead to phenomena like dead zones. As summer heats up, this "eye in the sky" may soon detect big phytoplankton blooms edging the shore, which spells trouble for aquatic life below.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
SeaWiFS
MODIS
Weather News at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Two die and 300 are evacuated in northern Italy storms: report
Rome (AFP) July 13, 2008
Two people were killed and around 300 were evacuated from their homes on Sunday as bad weather pounded northern Italy, the Ansa news agency said.







  • Asia sets stage for disaster relief exercise with key powers
  • Exercise For Rapid Disaster Relief Using Space-Based Technologies
  • Disaster deaths worse so far in 2008 than tsunami year: Munich Re
  • Immune Buildings Designed To Combat Chemical Warfare And Diseases

  • In Namibian desert, the heat is on to address climate change
  • Greenland Ice Cores Shows Drastic Climate Change Near End Of Ice Age
  • Schwarzenegger slams Bush administration on global warming
  • Bush administration puts off greenhouse gas regulation

  • India And France Joint Working Group Meet To Discuss Space
  • Raytheon Submits Proposal For NOAA Environmental Satellite Ground Segment
  • NASA Mission To Be Crystal Ball Into Future Of Oceans And Past Seas
  • ESA Satellite Assesses Damage Of Norway's Largest Fire

  • Arctic gas plant resumes production: StatoilHydro
  • Analysis: CO2 storage key to a cool Earth
  • Spain's Gamesa to supply 405 wind turbines to China
  • Russia's Putin tours new rig in Arctic oil drive

  • Discovery Of Key Malaria Proteins Could Mean Sticky End For Parasite
  • Pandemic Mutations In Bird Flu Revealed
  • Researchers Identify Potential Drug Candidates To Combat Bird Flu
  • Anti-retroviral drug cocktails slash AIDS deaths: study

  • Flatfish Fossils Fill In Evolutionary Missing Link
  • Big Brains Arose Twice In Higher Primates
  • Canada rejects Brussels ban on its seal skins
  • US DoE Joint Genome Institute Announces New Genome Sequencing Projects

  • Soot From Ships Worse Than Expected
  • Improving Swine Waste Fertilizer
  • Pesticides Persist In Ground Water
  • Only fraction of people recycle old mobile phones: study

  • Will Our Future Brains Be Smaller
  • Do We Think That Machines Can Think
  • A Microsatellite-Guided Insight Into The Genetic Status Of The Adi Tribe
  • New Map IDs The Core Of The Human Brain

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement