. Earth Science News .




.
FLORA AND FAUNA
The Evolution of Division of Labour
by Staff Writers
Vienna, Austria (SPX) Jan 27, 2012

File image.

Division of labour is not only a defining feature of human societies but is also omnipresent among the building blocks of biological organisms and is considered a major theme of evolution.

Theoretical Biologists Claus Rueffler and Joachim Hermisson from Vienna University in collaboration with Gunter P. Wagner from Yale University identified necessary conditions under which division of labour is favoured by natural selection. The results of their study are published in the Proceedings of the National Academy of Sciences (PNAS).

Most animals and plants consist of a set of building blocks, also called modules. An obvious case in point are higher organisms that are collections of many cells of different types. The modular structure of biological organization is also visible at many other levels: several plant organs are derived from leafs, insects have segmented bodies and vertebrates have different appendages. Our teeth are yet another example for this modular structure.

Evolution Need not Lead to Specialization
What jumps to the eyes is that modules are commonly not identical but differ in form and function as is clearly visible in for instance the case of incisive and molars. Such modules are specialists, which together with other specialist modules collaborate within an organism. This possibility for division of labour is regarded as one of the main advantages of a modular structure and a major trend in evolution.

On the other hand, many examples for organisms exist that consist of identical modules that jointly fulfil more than a single task. For example, some green algae are colonies of a few dozens of undifferentiated cells and each cell contributes to feeding, locomotion and reproduction. Similarly, millipedes and many primitive crustaceans consist of many undifferentiated body segments.

Conditions for Division of Labour derived from a Mathematical Model
"Under which conditions can we expect that division of labour evolves among the modules of an organism and when is functional specialization of modules prohibited? The answer to this question determines our understanding of why complex organisms have evolved in the first place and why not all organisms consist of collections of undifferentiated cells", explains Rueffler, lead author of the study from the University of Vienna.

Rueffler looked at this problem by means of a mathematical model. Contrary to previous efforts concerning this subject, his model is not geared towards a specific system but concentrates on the underlying commonalities that are shared by all systems consisting of multifunctional modules. In this way he and his co-authors aim at pinpointing general underlying principles.

Specialists versus Generalists
Starting point is the observation that modules cannot be specialized simultaneously for alternative tasks but are limited by trade-offs: incisive are good at breaking up food items into pieces but not at grinding up food items into small pieces ready for digestion.

The opposite holds true for molars. "The model answers the question, under which conditions an organism consisting of differentiated modules specialized for alternative tasks is superior to an organism consisting of generalist modules that can fulfil more than one task but only suboptimally so," argues Rueffler.

Causes for the Evolution of Division of Labour
A result of the model is that under very general assumptions the conditions leading to division of labour can be surprisingly restrictive. The reason is that due to trade-offs a high degree of specialization for one can be very costly in terms of loss of performance in alternative tasks. Furthermore, generalists have an advantage when damage to an organism resulting in the loss of specialized modules leads to a complete loss of function.

Therefore, if division of labour has evolved strong alternative factors have to be present that act in favour of functional differentiation. Division of labour is for example to be expected when modules are predisposed to contribute to a particular function solely due to their position within the organism. Such "positional effects" were surely drivers in for example the differentiation of teeth.

Another factor favouring a division of labour are synergistic effects between differentiated modules such that the performance of an organism is more than just the sum of the contribution of its parts.

The results of the study make plausible why despite a long evolutionary history still organisms of low complexity consisting of only a few cell types and with few or without any internal organs exist up to this day. The findings can now be used to study evolutionary trends in biological complexity across phylogenies.

Biographical Sketch of Claus Rueffler
Claus Rueffler studied biology und mathematics at the University of Kiel and received a PhD in theoretical evolutionary biology from Leiden University. He then worked as a postdoctoral fellow at the University of Toronto. Since 2008 Claus Rueffler is a junior group leader funded by the Vienna Science and Technology Fund (WWTF) working at the "Mathematics and Biosciences Group" at the Department of Mathematics of the University of Vienna.

Proceedings of the National Academy of Sciences (PNAS): Evolution of functional specialization and division of labor: Claus Rueffler, Joachim Hermisson (both University of Vienna), Gunter P. Wagner (Yale University). January 2012. DOI: 10.1073/pnas.1110521109

Related Links
Vienna University
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
S.African parliament tackles rhino poaching crisis
Johannesburg (AFP) Jan 26, 2012
From legalising trade in rhino horns to an outright ban on hunting the animals, South Africa's parliament Thursday wrestled with sometimes conflicting ideas on how to curb a devastating surge in poaching. Last year a record 450 rhinos were poached in South Africa, a crushing blow for a country home to more than 70 percent of the animal's global population. The gruesome toll came despite ... read more


FLORA AND FAUNA
N.Z. quake bill to approach $25 bn: central bank

NOAA satellites aid in the rescue of 207 people in 2011

Radiation fears slow Japan tsunami clear-up

Five Japan committees keep no disaster records

FLORA AND FAUNA
Catalyzing new uses for diesel by-products

Supermaterial goes superpermeable

Scientists create new atomic X-ray laser

World's most powerful X-ray laser creates 2-million-degree matter

FLORA AND FAUNA
Scientists Aboard Iberian Coast Ocean Drilling Expedition Report Early Findings

Carbon dioxide is driving fish crazy

Iraq water crisis could stir ethnic clash

Detecting Detrimental Change in Coral Reefs

FLORA AND FAUNA
Norway wants to block China from Arctic Council: report

Satellites detect abundance of fresh water in the Arctic

Alaskan farewell to Russian tanker after fuel run

Russian ship leaves after ice-bound Alaska fuel run

FLORA AND FAUNA
Fungi-filled forests are critical for endangered orchids

Barclays tops roll of shame at Davos

Improving crops from the roots up

Grafted watermelon plants take in more pesticides

FLORA AND FAUNA
Flood survivors rebuild in Philippine danger zones

Satellite snaps Costa Rica volcano action

Haiti should brace for more devastating quakes: study

Waiting for Death Valley's Big Bang

FLORA AND FAUNA
New AU headquarters marks strong China-Africa ties

African Union unveils Chinese-built headquarters

US Navy SEALs prove their mettle again

Former colonial soldiers in Mozambique hope for pensions

FLORA AND FAUNA
Following the first steps out of Africa

Arabia saw first humans out of Africa

The price of your soul: How the brain decides whether to 'sell out'

Penn Researchers Help Solve Questions About Ethiopians' High-Altitude Adaptations


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement