. Earth Science News .
The Power Behind Insect Flight: Researchers Reveal Key Kinetic Component

Insects have been remarkably successful in adapting to a great range of physical and biological environments.
by Staff Writers
Troy NY (SPX) Oct 31, 2006
Researchers from Rensselaer Polytechnic Institute and the University of Vermont have discovered a key molecular mechanism that allows tiny flies and other "no-see-ums" to whirl their wings at a dizzying rate of up to 1,000 times per second. The findings are being reported in the Oct. 30-Nov. 3 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"We have determined important details of the biochemical reaction by which the fastest known muscle type -- insect flight muscle -- powers flight," said Douglas Swank, assistant professor of biology at Rensselaer and lead author of the PNAS paper.

The findings will help scientists gain a better understanding of how chemical energy is converted into muscle movements, such as human heart muscle pumping blood. The research also could lead to novel insights into heart disease, and might ultimately serve in the development of gene therapies targeted toward correcting mutations in proteins that detrimentally alter the speed at which heart muscle fibers contract.

Since insects have been remarkably successful in adapting to a great range of physical and biological environments, in large part due to their ability to fly, the research also will interest scientists studying the evolution of flight, Swank noted. The project is supported by a three-year $240,000 grant from the National Institutes of Health and a four-year $260,000 grant from the American Heart Association.

The research is focused on a key component of muscle called myosin, the protein that powers muscle cell contraction. Swank's team focused its efforts on the fruit fly and asked a basic question: Why are fast muscles fast and slow ones slow? The researchers discovered that the reaction mechanism in insect flight muscle on the molecular level is different from how slower muscle types work.

"Most research has focused on slower muscle fibers in larger animals," Swank said. "By investigating extreme examples, e.g. the fastest known muscle type, the mechanisms that differentiate fast and slow muscle fiber types are more readily apparent."

In general, myosin breaks down adenosine triphosphate (ATP), the chemical fuel consumed by muscles, and converts it into force and motion. To do this, myosin splits ATP into two compounds, adenine diphosphate (ADP) and phosphate. Each compound is released from myosin at different rates. In slow-muscle contraction, ADP release is the slowest step of the reaction, but in the fastest muscle fibers, Swank's team has discovered that phosphate release is the slowest step of the reaction.

This finding is significant because the overall chemical reaction rate is set by the slowest step of the reaction. "What we have found is that in the fastest muscle type, ADP release has been sped up to the point where phosphate release is the primary rate-limiting step that determines how fast a muscle can contract," Swank said.

The next step, according to the researchers, is to experiment with other fast muscle types, such as the rattlesnake shaker muscle and fast mammalian muscle fibers. "By broadening our research, we will be able to determine if the phosphate release rate contributes to setting muscle speed in fast muscle types from other species," according to Swank.

Swank's collaborators on the project are Vivek K. Vishnudas and David W. Maughan of the Department of Molecular Physiology and Biophysics at the University of Vermont.

Related Links
Rensselaer Polytechnic Institute
Darwin Today At TerraDaily.com

Scientists' Cell Discovery Unearths Evolutionary Clues
York, UK (SPX) Oct 31, 2006
The full family tree of the species known as social amoebas has been plotted for the first time - a breakthrough which will provide important clues to the evolution of life on earth. Researchers, headed by evolutionary biologist Professor Sandie Baldauf, of the University of York, and biochemist Professor Pauline Schaap, of the University of Dundee, have produced the first molecular 'dictionary' of the 100 or so known species of social amoeba.







  • Hunger Driving North Korea Refugees, World Must Open Doors
  • LockMart To Create Incident Management Analysis System For The US Dept Of Interior
  • Intelligent Sensors Gear Up For Real-Time Flood Monitoring
  • FEMA Signing Statement Blasted

  • Stern's Grim Report
  • EU Members Face Showdown Over Emissions Trading Scheme
  • Insect Population Growth Likely Accelerated By Warmer Climate
  • Appalachian Mountains, Carbon Dioxide Caused Long-Ago Global Cooling

  • A Growing Intelligence Around Earth
  • Start of Operations Phase For ALOS And Data Provision To The Public
  • Afghanistan Opium Cultivation Monitored By International DMC Constellation
  • Deimos And Surrey Satellite Technology Contract For Spanish Imaging Mission

  • Australia To Build Southern Hemisphere's Largest Wind Farm
  • MIT's Pint-Sized Car Engine Promises High Efficiency, Low Cost
  • Important Advancement In Unraveling Mysteries Of Fusion Energy
  • Global Carbon Market Hits 22 Billion Dollars

  • Phoenix Rising: Scientists Resuscitate A 5 Million-Year-Old Retrovirus
  • Russia Tests Bird Flu Vaccine
  • Different Strategies Underlie The Ecology Of Microbial Invasions
  • Resistant Bug Battle Stepped Up

  • Elephants Recognize Themselves In The Mirror Too
  • Scientists' Cell Discovery Unearths Evolutionary Clues
  • The Power Behind Insect Flight: Researchers Reveal Key Kinetic Component
  • New Genetic Analysis Forces Re-Draw Of Insect Family Tree

  • Unique Imaging Uncovers The Invisible World Where Surfaces Meet
  • Yale Journal Identifies Products That Cause Greatest Environmental Damage
  • Yellow River Turns Red In Northwest China
  • Estuaries Of China's Greatest Rivers Declared "Dead Zones"

  • Fathers Influence Child Language Development More Than Mothers
  • Early Bronze Age Mortuary Complex Discovered In Syria
  • Lebanon Sees Revival Of Pre-Islamic Environmentalism
  • New Evidence Of Early Horse Domestication

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement