Subscribe free to our newsletters via your
. Earth Science News .




ICE WORLD
The making of Antarctica's hidden fjords
by Staff Writers
Tucson AZ (SPX) Mar 12, 2013


This 3-D reconstruction of the topography hidden under Antarctica's two-mile-thick coating of ice was made using data from radar surveys. Glaciers started carving Antarctica into the current mountain-and-fjord landscape 34 million years ago, according to new findings from University of Arizona geoscientist Stuart N. Thomson and his colleagues. Credit: Courtesy of Stuart N. Thomson/UA department of geosciences.

topography began changing from flat to fjord-filled starting about 34 million years ago, according to a new report from a University of Arizona-led team of geoscientists.

Knowing when Antarctica's topography started shifting from a flat landscape to one with glaciers, fjords and mountains is important for modeling how the Antarctic ice sheet affects global climate and sea-level rise.

Although radar surveys have revealed a rugged alpine landscape under Antarctica's two-mile-thick ice sheet, the surveys tell nothing about when the continent's deep valleys formed.

"We have worked out how the landscape under the ice has changed through time," said lead author Stuart N. Thomson.

"People have speculated when the big fjords formed under the ice," he said. "But no one knows for sure until you sample the rocks or the sediments."

He and his colleagues sampled East Antarctica's rocks by examining the sediments that built up off-shore for millions of years as rocks and dirt eroded off the continent into Prydz Bay.

"We use the sediments to trace what was happening under the ice in the past," said Thomson, a research scientist in the UA department of geosciences.

The team found that between 250 and 34 million years ago, erosion from the region now covered by the huge Lambert Glacier was slow, suggesting the area was relatively flat and drained by slow-moving rivers.

About 34 million years ago, at the same time the climate shifted and Antarctica was becoming covered with ice, the rate of erosion more than doubled, Thomson said.

"The only way that could happen is from glaciers," he said. "They started grinding and forming deep valleys."

Co-author Peter W. Reiners, a UA professor of geosciences, said, "East Antarctica's landscape changed dramatically when big glaciers appeared there.

"Glaciers can carve deep valleys quickly - and did so on Antarctica before it got so cold that the most of it got covered by one or two miles of thick, stationary ice."

The team's paper, "The contribution of glacial erosion to shaping the hidden landscape of East Antarctica," is published in the March issue of Nature Geoscience.

Other co-authors are Sidney R. Hemming of Columbia University's Lamont-Doherty Earth Observatory in Palisades, N.Y. and UA geoscientist George E. Gehrels. The National Science Foundation funded the research.

Geologists generally figure out a landscape's history by hiking around to look at the area's rocks and then toting some of them back to the lab for analysis.

"The trouble is, in Antarctica, 97 percent of the continent is covered in ice, and you can't directly access the rocks," Thomson said.

To reconstruct the history of East Antarctica's landscape, he and his colleagues instead studied bits of Antarctic rocks from cores of sediment taken just offshore of the Lambert Glacier by the Ocean Drilling Program.

The team used 1,400 individual sand-sized grains of minerals from various locations throughout three different cores to figure out how quickly the surface of Antarctica had eroded at various times in the past.

Because other researchers had used microfossils to pinpoint when in geological time each layer of the core had been deposited, Thomson and his colleagues knew when each of those 1,400 samples had been washed from Antarctica's surface into the sea.

To link a time in the landscape's history to an erosion rate, geologists can use the "cooling age" of rocks. The cooling age tells how fast the rock was uncovered from a particular depth in the Earth.

As a rock is moved deeper into the Earth, it warms, and as it moves toward the surface of the Earth, it cools. A particular depth in the Earth corresponds to a particular temperature. Minerals in the rock, apatite and zircon, record when they were last at a certain depth/temperature.

For each of the 1,400 samples, Thomson and his UA colleagues used three independent dating techniques to see how fast the mineral grain was exposed by erosion. Thomson's lab did the fission-track dating; Reiners' lab did the uranium-thorium-helium dating; and Gehrels' lab did the uranium-lead dating.

The different methods of analysis all point to the same answer.

Reiners said, "We can say when and in what way this mysterious sub-ice landscape changed and how. East Antarctica's landscape changed dramatically when big glaciers appeared there."

Knowing how the ice sheets changes in the past is important for predicting future changes in ice sheet growth, sea-level change and climate, Thomson said.

His next step is looking offshore in other regions of Antarctica to see if they show the same pattern.

.


Related Links
University of Arizona
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
Yeti Helps Conquer Some "Abominable" Polar Hazards
Washington DC (SPX) Mar 11, 2013
A century after Western explorers first crossed the dangerous landscapes of the Arctic and Antarctic, researchers funded by the National Science Foundation (NSF) have successfully deployed a self-guided robot that uses ground-penetrating radar to map deadly crevasses hidden in ice-covered terrains. Deployment of the robot--dubbed Yeti--could make Arctic and Antarctic explorations safer by ... read more


ICE WORLD
Fukushima status little improved

Fukushima victims sue Japan government, TEPCO

British business backs PM's foreign aid pledge

NASA Wallops Recovery Continues from Hurricane Sandy

ICE WORLD
Russian satellite hit by remnants of destroyed Chinese spacecraft

NUS graphene researchers create 'superheated' water that can corrode diamonds

Activists fault WHO report on Fukushima radiation

SimCity climbing from launch wreckage

ICE WORLD
It's only natural: Lawrence Livermore helps find link to arsenic-contaminated groundwater

Four shark species win international trade protection

Tracking sediments' fate in largest-ever dam removal

Sharks, manta rays win global trade protection

ICE WORLD
Rivers flowing under Greenland ice traced

The making of Antarctica's hidden fjords

Global warming will open unexpected new shipping routes in Arctic, UCLA researchers find

Glaciers will melt faster than ever and loss could be irreversible warn scientists

ICE WORLD
Argentina's potash dream at risk from Vale

Thousands of dead pigs found in Shanghai river

Delayed EU phosphorus plans coming soon

Tokyo's sale of Japan Tobacco stake worth $7.8 bn: company

ICE WORLD
Japan marks second tsunami anniversary

California quake revives Big One jitters

Breaking the rules for how tsunamis work

Floating tsunami trash to be a decades-long headache

ICE WORLD
China congratulates Kenyatta over election win

Poll leaves Kenya still bitterly divided

South Sudan, Sudan say pulling troops from tense border

China's Xi to visit S.Africa this month

ICE WORLD
New study validates longevity pathway

Siberian fossil revealed to be one of the oldest known domestic dogs

Kirk, Spock together: Putting emotion, logic into computational words

After the human genome project: The human microbiome project




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement