. | . |
The primate brain is 'pre-adapted' to face potentially any situation by Staff Writers Washington DC (SPX) Jun 13, 2016
Scientists have shown how the brain anticipates all of the new situations that it may encounter in a lifetime by creating a special kind of neural network that is "pre-adapted" to face any eventuality. This emerges from a new neuroscience study published in PLOS Computational Biology. Enel et al at the INSERM in France investigate one of the most noteworthy properties of primate behavior, its diversity and adaptability. Human and non-human primates can learn an astonishing variety of novel behaviors that could not have been directly anticipated by evolution - we now understand that this ability to cope with new situations is due to the "pre-adapted" nature of the primate brain. This study shows that this seemingly miraculous pre-adaptation comes from connections between neurons that form recurrent loops where inputs can rebound and mix in the network, like waves in a pond, thus called "reservoir" computing. This mix of the inputs allows a potentially universal representation of combinations of the inputs that can then be used to learn the right behaviour for a new situation. The authors demonstrate this by training a reservoir network to perform a novel problem solving task. They then compared the activity of neurons in the model with activity of neurons in the prefrontal cortex of a research primate that was trained to perform the same task. Remarkably, there were striking similarities in the activation of neurons in both the reservoir model and the primate. This breakthrough shows that we have taken big step towards understanding the local recurrent connectivity in the brain that prepares primates to face unlimited situations. This research shows that by allowing essentially unlimited combinations of internal representations in the network of the brain, one of them is always on hand for the given situation. Enel P, Procyk E, Quilodran R, Dominey PF (2016) Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex. PLoS Comput Biol 12(6): e1004967. doi:10.1371/journal.pcbi.1004967
Related Links PLOS All About Human Beings and How We Got To Be Here
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |