. | . |
The tipping point for legislative polarization by Staff Writers Troy NY (SPX) Dec 09, 2021
A predictive model of a polarized group, similar to the current U.S. Senate, demonstrates that when an outside threat - like war or a pandemic - fails to unite the group, the divide may be irreversible through democratic means. Published in the Proceedings of the National Academy of Sciences as part of a Dynamics of Political Polarization Special Feature, the model identifies such atypical behavior among the political elite as a powerful symptom of dangerously high levels of polarization. "We see this very disturbing pattern in which a shock brings people a little bit closer initially, but if polarization is too extreme, eventually the effects of a shared fate are swamped by the existing divisions and people become divided even on the shock issue," said network scientist Boleslaw Szymanski, a professor of computer science and director of the Army Research Laboratory Network Science and Technology Center (NeST) at Rensselaer Polytechnic Institute. "If we reach that point, we cannot unite even in the face of war, climate change, pandemics, or other challenges to the survival of our society." The model - essentially a game that simulates the views of 100 theoretical legislators over time - allowed researchers to dial up party identity, intolerance for disagreement, and extremism to levels such that almost no degree of shock could unite the legislative group. In some situations, the simulation revealed that even the strongest shock fails to reverse the self-reinforcing dynamics of political polarization. Szymanski worked with fellow network scientists Jianxi Gao, a Rensselaer assistant professor of computer science and member of NeST, and Michael Macy of Cornell University. NeST is actively engaged in research on network polarization, with findings that include a study on how improved search algorithms could reduce polarization, and a pending-publication analysis of news shared on Twitter during the 2016 and 2020 presidential elections. The work builds on an earlier general model Szymanski developed to study the interactions of legislators in a two-party political system. Although the model isn't specifically tuned to distinctive practices, customs, and rules of the U.S. Congress, it was trained using data, and previous research comparing model outcomes to 30 years of Congressional voting records demonstrated strong predictive power. In one finding from that work, the model accurately predicted the shift in polarization in 28 of 30 U.S. Congresses. To simulate the behavior of a group as complex as a legislative body, the model creates 100 members of a legislature, with varying positions on 10 divisive issues (such as gun control or abortion) and a fixed level of party loyalty. Over time, the model tracks each member's position on the 10 issues as they interact with network neighbors with similar positions, and even form small groups among like-minded members. The team manipulates a group of "control parameters" to test how intolerance, party identity, extremism, and the strength of an outside threat might impact polarization. At each time step, the model records two measures of polarization: party polarization is measured as the expected difference between one member of each party on a randomly chosen issue; and a statistical method is used to calculate extremism based on a randomly chosen issue. And then, into this game, the research team dropped a new issue, the outside threat, and recorded how the group behaved. Graphs depicting the relationship between polarization and the control parameters show that some situations reach the tipping point, which researchers call a "phase transition," in which measures of polarization begin to inexorably climb. In some cases, by dialing down the control parameters, the trend can be reversed. But in others, no recovery is possible. "Although political polarization is nothing new, expanding political division is creating an unpredictable environment that threatens the capacity of government to respond rationally in a crisis," said Curt Breneman, dean of the Rensselaer School of Science. "This research is designed to enhance societal resilience by predicting when the level of political polarization within an influential group is nearing the point where a sudden threat will no longer produce collective action." At Rensselaer, Szymanski and Gao were joined in the research by Manqing Ma and Daniel Tabin. "Polarization and Tipping Points" was supported by the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, the National Science Foundation, and the Rensselaer-IBM Artificial Intelligence Research Collaboration.
Research Report: "Polarization and tipping points"
US imposes arms embargo on Cambodia over China, human rights concerns Washington (AFP) Dec 8, 2021 The US government on Wednesday imposed an arms embargo on Cambodia, citing concerns about human rights and corruption in the southeast Asian nation as well as China's activities there. The actions taken by the State and Commerce departments will "restrict" access to "less-sensitive military items" and "defense articles and defense services" by Cambodia's military and intelligence agencies, according to a statement. "The United States remains fully committed to Cambodia's independence and the sov ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |