. Earth Science News .
WATER WORLD
This supermoon has a twist
by Brian McNoldy | Senior Research Associate, University of Miami
Miami FL (The Conversation) Apr 24, 2021

stock image only

A "super full moon" is coming on April 27, 2021, and coastal cities like Miami know that means one thing: a heightened risk of tidal flooding.

Exceptionally high tides are common when the moon is closest to the Earth, known as perigee, and when it's either full or new. In the case of what's informally known as a super full moon, it's both full and at perigee.

But something else is going on with the way the moon orbits the Earth that people should be aware of. It's called the lunar nodal cycle, and it's presently hiding a looming risk that can't be ignored.

Right now, we're in the phase of an 18.6-year lunar cycle that lessens the moon's influence on the oceans. The result can make it seem like the coastal flooding risk has leveled off, and that can make sea level rise less obvious.

But communities shouldn't get complacent. Global sea level is still rising with the warming planet, and that 18.6-year cycle will soon be working against us.

I am an atmospheric scientist at the University of Miami's Rosenstiel School of Marine and Atmospheric Science who keeps a close eye on sea level rise in Miami. Here's what you need to know.

What the moon has to do with coastal flooding
The moon's gravitational pull is the dominant reason we have tides on Earth. More specifically, Earth rotating beneath the moon once per day and the moon orbiting around Earth once per month are the big reasons that the ocean is constantly sloshing around.

In the simplest terms, the moon's gravitational pull creates a bulge in the ocean water that is closest to it. There's a similar bulge on the opposite side of the planet due to inertia of the water. As Earth rotates through these bulges, high tides appear in each coastal area every 12 hours and 25 minutes. Some tides are higher than others, depending on geography.

The sun plays a role too: Earth's rotation, as well as its elliptic orbit around the sun, generates tides that vary throughout the day and the year. But that impact is less than half of what the moon contributes.

This gravitational tug-of-war on our water was discovered nearly 450 years ago, though it's been happening for nearly four billion years. In short, the moon has very strong control over how we experience sea level. It doesn't affect sea level rise, but it can hide or exaggerate it.

So, what is the lunar nodal cycle?
To begin, we need to think about orbits.

Earth orbits the sun in a certain plane - it's called the ecliptic plane. Let's imagine that plane being level for simplicity. Now picture the moon orbiting Earth. That orbit also lies on a plane, but it's slightly tilted, about 5 degrees relative to the ecliptic plane.

That means that the moon's orbital plane intersects Earth's orbital plane at two points, called nodes.

The Moon's orbital plane precesses, or wobbles, to a maximum and minimum of +/- 5 degrees over a period of about 18.6 years. This natural cycle of orbits is called the Lunar Nodal Cycle. When the lunar plane is more closely aligned with the plane of Earth's equator, tides on Earth are exaggerated. Conversely, when the lunar plane tilts further away from the equatorial plane, tides on Earth are muted, relatively.

The lunar nodal cycle was first formally documented in 1728 but has been known to keen astronomical observers for thousands of years.

What effect does that have on sea level?
The effect of the nodal cycle is gradual - it's not anything that people would notice unless they pay ridiculously close attention to the precise movement of the moon and the tides for decades.

But when it comes to predictions of tides, dozens of astronomical factors are accounted for, including the lunar nodal cycle.

It's worth being aware of this influence, and even taking advantage of it. During the most rapid downward phase of the lunar nodal cycle - like we're in right now - we have a bit of a reprieve in the observed rate of sea level rise, all other things being equal.

These are the years to implement infrastructure plans to protect coastal areas against sea level rise.

Once we reach the bottom of the cycle around 2025 and start the upward phase, the lunar nodal cycle begins to contribute more and more to the perceived rate of sea level rise. During those years, the rate of sea level rise is effectively doubled in places like Miami. The impact varies from place to place since the rate of sea level rise and the details of the lunar nodal cycle's contribution vary.

Another "super full moon" will be coming up on May 26, so like the one in April, it's a perigean full moon. Even with the lunar nodal cycle in its current phase, cities like Miami should expect some coastal flooding.


Related Links
University of Miami
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Hatchery reviving Britain's near-extinct local oysters
Portsmouth, United Kingdom (AFP) April 24, 2021
Decimated by over-fishing and pollution, British oysters could make a comeback as a hatchery in the Channel port city of Portsmouth is helping to revive a native species. At Portsmouth University's Institute of Marine Sciences, huge piles of empty oyster shells are stacked in the courtyard, ready for the young oyster larvae to move in. "In the wild environment, the oysters will be reproducing roughly May through to September, and we're hoping that that will be mimicked here in the hatchery," sai ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
NASA Data Helps Builds Resilience as Disasters Grow More Intense

Wild horses flourish in Chernobyl 35 years after explosion

U.S. Coast Guard cutter participates in exercises with Italy's coast guard, navy

Fire kills 82 at Iraqi Covid hospital, health minister suspended

WATER WORLD
Microchip expands its range of radiation-hardened arm microcontrollers for space systems

Arrival of world-first test facility

York Space Systems begins production of larger LX-CLASS platform

Accion Systems set for launch of two TILE 2 in-space propulsion systems

WATER WORLD
Navigating beneath the Arctic ice

This supermoon has a twist

Navy exercise tests unmanned vessels, aircraft

Fiji fears virus 'tsunami' after outbreak found to be Indian variant

WATER WORLD
Arctic sponges leave trails of spicules along the ocean floor

NORTHCOM says U.S. must defend interests in the Arctic

Accurate subseasonal-to-seasonal prediction remains a grand challenge

Arctic sizzled in 2020, the warmest year for Europe too

WATER WORLD
In London, rail-side gardening blossoms during pandemic

ESA and FAO unite to tackle food security and more

France to give one bn euros aid to farmers hit by frost

Tunisia 'sandy' farms resist drought, development

WATER WORLD
Stanford researchers reveal that homes in floodplains are overvalued by nearly $44 billion

Submarine volcanoes release enough energy to power the United States

Strong quake hits India's Assam state

Angola flood death toll rises to 24

WATER WORLD
Nigerian troops suffer heavy losses in drawn-out battles with jihadists

DR Congo PM says not ruling out 'state of emergency' in east

Abducted Westerners feared killed in Burkina

Liberia pledges to prevent rebel attacks on Ivory Coast

WATER WORLD
UBCO researcher re-evaluates estimate of the world's high-altitude population

Planet of the Cave People

A new perspective on the genomes of archaic humans

S.Africa's gangster baboon comes to an untimely end









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.