. Earth Science News .
WATER WORLD
Through machine learning, new model holds water
by Staff Writers
Lemont IL (SPX) Apr 08, 2019

Molecular dynamics simulations based on machine learning show how grains of ice form and coalesce in supercooled water, which results in ice with imperfections. These simulations help scientists learn about the movement of the boundary between ice grains (yellow/green/cyan) and the stacking disorder that occurs when hexagonal (orange) and cubic (blue) pieces of ice freeze together. This information is important in applications such as climate modeling and cryogenics. Researchers performed these simulations on Mira at the Argonne Leadership Computing Facility and Carbon at the Center for Nanoscale Materials; ALCF and CNM are both DOE Office of Science User Facilities.

While water is perceived to be one of the simplest substances in the world, modeling its behavior on the atomic or molecular level has frustrated scientists for decades. To date, no single model has been able to accurately represent the plethora of water's singular characteristics, including the fact that it is densest at a temperature slightly higher than its melting point.

A new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory has achieved a breakthrough in the effort to mathematically represent how water behaves. To do so, Argonne researchers used machine learning to develop a new, computationally inexpensive water model that more accurately represents the thermodynamic properties of water, including how water changes to ice at the molecular scale.

In the study, researchers at Argonne's Center for Nanoscale Materials (CNM) used a machine learning workflow to optimize a new molecular model of water. They trained their model against extensive experimental data to generate a highly accurate molecular-scale model of water's properties. The CNM is a DOE Office of Science User Facility.

Optimizing model parameters for water has long been a challenge, and more than 50 different water models currently exist, according to Argonne nanoscientist Subramanian Sankaranarayanan, the study's corresponding author.

"We are trying to understand how to navigate the complex parameter space for any given model in order to capture a wide spectrum of water's properties, which is extremely difficult," Sankaranarayanan explained. "There is no existing model that can account for water's melting point, its density maximum and the density of ice, all at the same time."

Trying to create quantum mechanical or atomistic models to capture water's behavior had flummoxed researchers because they are so computationally intensive and still fail to reproduce many temperature-dependent properties of water.

According to Henry Chan, Argonne postdoctoral researcher and the lead author of the study, this is even more difficult to achieve for simple models, such as the one used in this study.

For the researchers, the choice to use entire water molecules as the fundamental unit in the model allowed them to perform the simulation at low computational cost.

"While traditionally these simple models introduce a number of approximations and often suffer from poor accuracy, machine learning allows us to create a much more accurate model while maintaining simplicity," said University of Louisville assistant professor Badri Narayanan, a co-first author of the study.

However, even with this reduced computational expense, some physical properties can be difficult to simulate without large-scale supercomputers. The team used the Mira supercomputer at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, to perform simulations of up to 8 million water molecules to study the growth and formation of interfaces in polycrystalline ice.

According to co-first author and CNM assistant scientist Mathew Cherukara, this new model, termed "coarse-grained," achieves a fidelity on par with models that incorporate an atomic-level description.

"Traditionally, you would think that introducing these approximations would typically result in a far worse model - one that's efficient but that does not perform very well," he said. "The beauty is that this molecular model has no right to be as accurate as the atomistic models, but still ends up being so."

To achieve the high accuracy of the coarse-grained model, the researchers trained the model using information drawn from nearly a billion atomic-scale configurations involving temperature-dependent properties that are well known. "Essentially, we said to our model, 'look, this is what the properties are,' and asked it to give us parameters that were able to reproduce them," Chan said.

Training the model involved what Chan called a "hierarchical approach," in which each candidate model was put through a series of tests or evaluations, starting with basic essential properties before working its way up to more complex ones. "You can think of it like trying to teach a child a skill," Chan said. "You start with something fundamental and work your way up once you see progress."

The researchers also showed that their approach could be used to improve the performance of other existing atomistic and molecular models. "We were able to significantly improve the performance of existing high-quality water models using our hierarchical approach. In principle, we should be able to revisit all molecular models and help each one of them attain their best performance," Sankaranarayanan said.

A paper based on the study, "Machine learning coarse grained models for water," appeared in the January 22 online issue of Nature Communications. Other Argonne authors included Chris Benmore, Stephen Gray, and Troy Loeffler.


Related Links
Argonne's Center for Nanoscale Materials
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Ultrabright X-rays reveal the molecular structure of membranes used to purify seawater
Upton NY (SPX) Apr 08, 2019
For the first time, a team of researchers from Stony Brook University and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have revealed the molecular structure of membranes used in reverse osmosis. The research is reported in a recently published paper in ACS Macro Letters, a journal of the American Chemical Society (ACS). Reverse osmosis is the leading method of converting brackish water or seawater into potable or drinking water, and it is used to make about 25,000 million g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Earth's recovery from mass extinction could take millions of years

Gun control, climate: a new US generation takes to the barricades

Lebanon sees eastern EU refugee hardline as model to follow

Disease fears mount for Africa cyclone survivors

WATER WORLD
Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

ESA oversees teaching of Europe's next top solderers

Russia's new ISS modules will be shielded with fabrics used in body armour

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms

WATER WORLD
Through machine learning, new model holds water

Carbon lurking in deep ocean threw ancient climate switch, say researchers

Survival in arid eastern Chad depends on struggle for water

Ultrabright X-rays reveal the molecular structure of membranes used to purify seawater

WATER WORLD
NASA Begins Final Year of Airborne Polar Ice Mission

Russia's glossy Arctic army base on guard for enemies and bears

Woolly mammoths, Neanderthals had similar genetic traits

Melting glaciers causing sea levels to rise at ever greater rates

WATER WORLD
New pathways for sustainable agriculture

Just how much does enhancing photosynthesis improve crop yield?

The future of agriculture is computerized

'Cow toilets' in Netherlands aim to cut e-moo-ssions

WATER WORLD
The solid Earth breathes

Floods force evacuation of hospital in southwest Iran

Mount Kilimanjaro: Ecosystems in global change

Flooding in Paraguay's capital due to heavy rain

WATER WORLD
Defiant Sudan protesters seek army talks

US admits first civilian casualties in Somalia airstrikes

General Gaid Salah: key figure of power in Algeria

French troops move to Mali's crossroads region in anti-jihad push

WATER WORLD
Can technology improve even though people don't understand what they are doing?

Is Earth Quarantined? Researchers Meet to Try Shed Light on Alien Riddle

Researchers get humans to think like computers

Attractive businesswomen considered less trustworthy, surveys suggest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.