. | . |
Tide-triggered tremors give clues for earthquake prediction by Staff Writers Los Alamos NM (SPX) Jul 22, 2016
The triggering of small, deep earthquakes along California's San Andreas Fault reveals depth-dependent frictional behavior that may provide insight into patterns signaling when a major quake could be on the horizon, according to a paper released this week by the Proceedings of the National Academy of Sciences (PNAS). The study, which was led by the U.S. Geological Survey and Los Alamos National Laboratory, reports that the deepest part of California's 800-mile-long San Andreas Fault is weaker than expected and produces small earthquakes in response to tidal forces. "These findings provide previously inaccessible information about the San Andreas Fault activity and strength," said Los Alamos National Laboratory's Paul Johnson, a coauthor on the paper and geophysicist in the Lab's Earth and Environmental Sciences Division. "The study's discovery of low-frequency-earthquake (LFE) and tidal triggering of the San Andreas Fault gives seismologists new warning signals and information about slightly more predictable triggers of quakes to come." Los Alamos maintains technical expertise in seismology and the behavior of Earth's crust as a part of its role monitoring underground nuclear testing globally and applies that expertise to other national challenges, including earthquakes. The team used a data set of 81,000 LFEs since 2008 to match LFEs to tides. They determined in addition to being modulated with the semidiurnal (twice daily) tides, LFEs are also modulated by fortnightly tides. The contrasting relationship between the LFE responses observed at two different tidal timescales should serve as a powerful constraint on understanding frictional behavior and stress transfer on the deep San Andreas. "The findings provide new information regarding the fault zone structure with depth," Johnson said. The authors found that deep, small, low-frequency earthquakes (LFEs) on the San Andreas Fault are most likely to occur during the waxing period approaching a full or new moon within the fortnightly tide period of 14.7 days. The fortnightly tide modulates the semidiurnal (twice a day) tide. LFEs preferentially occur not when the tidal amplitude is highest, as might be expected, but when the tidal amplitude most exceeds its previous value, the authors found. LFEs correlate more strongly with larger-amplitude shear stress. Previous studies have found stronger tidal semidiurnal variation for deeper, continuously active LFE families. The team used two models to explain variations: One, based on friction studies, posited LFEs occur when stress accelerates slip. The other model suggests LFEs occur by simple threshold failure but are driven indirectly by tidally modulated creep. Regardless of which tidal triggering model is correct, the inverse relationship between the strength of the semidiurnal and fortnightly modulations provides a key insight into the mechanics of LFEs and the structure of the deep fault, according to the paper. "The pattern of LFEs tells us something about loading rates and stress conditions in the deep part of the fault," said Andrew Delorey, a seismologist with Los Alamos. "We don't know to what extent the deep part of the fault where LFEs occur is coupled to the shallow part of the fault where regular earthquakes occur. We may find that as stress increases and approaches failure in the shallow fault, where large earthquakes occur, it will affect the pattern of LFEs in a way that allows us to use LFE behavior to infer conditions in the shallow fault." While tidal triggering of earthquakes is found only for select environments, triggering of tremor has been found almost everywhere that tectonic tremor is observed, generating insights into the mechanics of the brittle transition zones. The response to the tidal stress carries otherwise inaccessible information about fault strength and rheology.
Related Links Los Alamos National Laboratory Bringing Order To A World Of Disasters When the Earth Quakes A world of storm and tempest
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |