. | . |
Trapped saltwater caused mangrove death after Hurricane Irma by Sofie Bates for NASA Earth News Greenbelt MD (SPX) Aug 03, 2021
When Hurricane Irma hit southern Florida in September of 2017, the storm buffeted coastal mangrove forests with winds over 116 mph - strong enough to rip off leaves, break branches, and snap tree trunks in half. Of the mangrove forest damaged by Hurricane Irma, about 83% recovered after the first year. But the rest didn't, leaving scientists wondering why some trees didn't bounce back. Using NASA data collected before and after Hurricane Irma, researchers found that storm surge and trapped seawater - not wind - ultimately caused the trees to die. Trees survived in places where salty ocean water brought in by the hurricane was able to drain, they write in a paper published June 28 in Nature Communications. But in areas where the saltwater was trapped in low lying areas without enough drainage, the mangroves couldn't recover. The findings suggest that improving the flow of water near submerged mangroves or flushing them with freshwater could help restore mangroves after a hurricane. Mangroves have adapted to live along the coast. These forests act as a barrier to protect inland areas and coastal communities during a storm. Some species have a network of above-ground "prop roots" that support the tree while others have roots that look like long fingers poking out of the ground, providing extra support to stabilize the tree and provide oxygen to the root system. These semi-submerged root networks are also an important nursery habitat for fish and other marine species. "Even though mangroves are hardy, sturdy trees, they still need certain conditions to maintain that protective barrier. And if environmental conditions change even a little, it can have a huge effect and lead to complete die off in entire regions, which could leave those coastal regions even more vulnerable to the next storm," said Lola Fatoyinbo, a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
Snapshots Before and After the Hurricane They repeated the measurements they had done before the hurricane hit, flying an airplane carrying a high-resolution camera and other scientific instruments over large swaths of the Everglades. The data collected using Goddard Lidar, Hyperspectral and Thermal Imager (G-LiHT), which includes a laser that emits pulses that bounce off the top of the tree canopy, the ground, or anywhere in between before returning to the sensor, provided snapshots of the structure of these mangrove ecosystems before and after Irma. That allowed the scientists to get a three-dimensional view of the tree canopy-and compare how it had changed after the hurricane. According to the G-LiHT and Landsat satellite data, 62% of mangroves in southwest Florida suffered canopy damage from Hurricane Irma. The team mapped the dead and damaged areas and compared them to places with high wind speed, high storm surge, taller trees, land elevation and other factors to see if there was any overlap. NASA's Global Modeling and Assimilation Office provided a model of wind speeds during the hurricane; storm surge data came from Louisiana State University's Coastal Emergency Risks Assessment and the National Oceanic and Atmospheric Administration (NOAA).
Storm Surge: A Salty Assault on Mangroves "The wind is doing damage, but the nail in the coffin is storm surge," said David Lagomasino, a coastal geomorphologist based at East Carolina University's Outer Banks Campus. Excess salt and water from trapped storm surge may choke roots, change microbial communities, break down the soil and kill other vegetation, Lagomasino says, which could lead to tree death.
Storms on the Horizon for Mangrove Forests "What we're seeing is that more and more of the mangroves aren't able to recover, and that's what's scary," said Fatoyinbo. "Even though mangroves are so tolerant of these extreme conditions, they're still really vulnerable."
Finnish monks turn to forestry to cover virus losses Heinavesi, Finland (AFP) July 30, 2021 The Orthodox monastery of Valamo in Finland usually receives around 160,000 visitors a year, many from Europe and Russia who come to experience the peaceful surroundings and expansive orthodox library, as well as the country's largest whisky distillery. But with the coronavirus pandemic, "we've had far fewer guests," leading to a loss of donations and tourist income, says Father Mikael, sporting a beard, black hat and robe. However, the forests that the monks bought when they fled to the area a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |