. Earth Science News .
UGA Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses

Under the microscope: The H5N1 Avian flu virus.
by Staff Writers
Athens GA (SPX) Nov 16, 2006
Waiting a day or more to get lab results back from the doctor's office soon could become a thing of a past. Using nanotechnology, a team of University of Georgia researchers has developed a diagnostic test that can detect viruses as diverse as influenza, HIV and RSV in 60 seconds or less.

In addition to saving time, the technique - which is detailed in the November issue of the journal Nano Letters - could save lives by rapidly detecting a naturally occurring disease outbreak or bioterrorism attack.

"It saves days to weeks," said lead author Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development at the UGA College of Veterinary Medicine. "You could actually apply it to a person walking off a plane and know if they're infected."

The technique, called surface enhanced Raman spectroscopy (SERS), works by measuring the change in frequency of a near-infrared laser as it scatters off viral DNA or RNA. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.

This phenomenon is well known, but Tripp explained that previous attempts to use Raman spectroscopy to diagnose viruses failed because the signal produced is inherently weak.

But UGA physics professor Yiping Zhao and UGA chemistry professor Richard Dluhy experimented with several different metals and methods and found a way to significantly amplify the signal. Using a method they've patented, they place rows of silver nanorods 10,000 times finer than the width of a human hair on the glass slides that hold the sample. And, like someone positioning a TV antenna to get the best reception, they tried several angles until they found that the signal is best amplified when the nanorods are arranged at an 86-degree angle.

"The enhancement factors are extraordinary," Dluhy said. "And the nice thing about this fabrication methodology is that it's very easy to implement, it's very cheap and it's very reproducible."

Tripp said the technique is so powerful that it has the potential to detect a single virus particle and can also discern virus subtypes and those with mutations such as gene insertions and deletions. This specificity makes it valuable as a diagnostic tool, but also as a means for epidemiologists to track where viruses originate from and how they change as they move through populations.

The researchers have shown that the technique works with viruses isolated from infected cells grown in a lab, and the next step is to study its use in biological samples such as blood, feces or nasal swabs. Tripp said preliminary results are so promising that the researchers are currently working to create an online encyclopedia of Raman shift values. With that information, a technician could readily reference a Raman shift for a particular virus to identify an unknown virus.

To make their finding commercially viable, they're developing a business model, seeking venture capital and exploring ways to mass produce the silver nanorods. Next year, they plan on moving their enterprise to the Georgia BioBusiness Center, an UGA incubator for startup bio-science companies.

Presently, viruses are first diagnosed with methods that detect the antibodies a person produces in response to an infection. Tripp explained that these tests are prone to false positives because a person can still have antibodies in their system from a related infection decades ago. The tests are also prone to false negatives because some people don't produce high levels of antibodies.

Because of these limitations, antibody based tests often must be confirmed with a test known as polymerase chain reaction (PCR), which detects the virus itself by copying it many times. The test can take anywhere from several days to two weeks. Tripp said the latter is clearly too long, especially in light of emerging threats such as H5N1 avian influenza.

"For some respiratory viruses, you've either cleared the infection at that point or succumbed to the infection," Tripp said. "What we've developed is the next generation of diagnostic testing."

Related Links
University of Georgia
The science and news of Epidemics on Earth

Pattern Of Human Ebola Outbreaks Linked To Wildlife And Climate
San Diego CA (SPX) Nov 16, 2006
A visiting biologist at the University of California, San Diego and her colleagues in Africa and Britain have shown that there are close linkages between outbreaks of Ebola hemorrhagic fever in human and wildlife populations, and that climate may influence the spread of the disease.







  • Joining Forces To Predict Tsunamis
  • Indian Disaster Warning System To Be Ready By 2007 Says Space Agency
  • Japan Probes Damage From Killer Twister
  • Developing Models To Predict Organizational Response To Extreme Events

  • Climate Change Survival Dependent On More Than Latitude
  • Australian PM To Embrace Carbon Trading At APEC
  • Global Warming Triggers North Sea Temperature Rise
  • Global Warming Threatens Canada Hydro Power, Oil Exports

  • SciSys Wins Software Role For CryoSat-2 Mission
  • Next Generation Imaging Detectors Could Enhance Space Missions
  • SSTL Signs Contract With Federal Republic Of Nigeria For Supply Of EO Satellite
  • NASA Snow Data Helps Maintain Largest And Oldest Bison Herd

  • Cheaper Color Printing By Harnessing Ben Franklin's Electrostatic Forces
  • MIT Math Model Could Aid Natural Gas Production
  • 'Tornadoes' Are Transferred From Light To Sodium Atoms
  • Russia Weighs Legal Action Against Shell-Led Project

  • Pattern Of Human Ebola Outbreaks Linked To Wildlife And Climate
  • UGA Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses
  • 26,000 Russians Contracted HIV Since Start Of Year
  • Next Flu Pandemic: What To Do Until The Vaccine Arrives

  • Bill Targets Animal Activists
  • First Far Eastern Leopard Captured In Southeast Russia
  • Global Warming Increases Species Extinctions Worldwide
  • Crystalline Life Patterns

  • No Magic Bullet For Carbon Pollution Says IEA
  • Silicon Valley Trying To Lead By Green Example
  • Zanzibar Plastic Bag Ban Takes Effect As Environment Woes Mount
  • OECD Says China Must Step Up Environmental Efforts

  • Neanderthal Genome Sequencing Yields Surprising Results
  • Dad Inspired 'Jurassic Park,' Son Inspires 'Jurassic Poop'
  • Buffet for Early Human Relatives Two Million Years Ago
  • Unraveling Where Chimp And Human Brains Diverge

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement