. | . |
Ultraviolet Light Helps To Secure Water Supply
Paris, France (SPX) Oct 22, 2007 A major public health issue and economic problem has been addressed in experiments carried out by researchers from the University Denis Diderot in Paris, and the VEOLIA Research Center in Maisons-Laffitte (France). Extremely chlorine-resistant parasites, known as Cryptosporidium, which cause a diarrheal disease in humans and can lead to significant mortality in immunodeficient patients, become virtually inactive when exposed to industrial UV reactors. Human contamination of this waterborne disease, known as cryptosporidiosis, occurs by ingestion of the resistant form of the parasite, either directly through person-to-person and animal-to-person routes or indirectly through environmental vehicles including water, food or soil. Contamination of water resources for drinking water supplies, as well as inadequate water treatment can be responsible for large cryptosporidiosis outbreaks. Up until now, there has been no efficient curative treatment, making it one of the most common causes of waterborne disease within humans in the United States. Thanks to collaboration between researchers at the Laboratory of Parasitology of the University Denis Diderot, and the VEOLIA Research Center, the efficacy of UV light was demonstrated in large scale tests with pilot equipment. The study was designed for spiking experiments in which water was experimentally contaminated with large amounts of Cryptosporidium oocysts then passed through the UV reactors. The efficacy of medium-pressure and low-pressure UV reactors (UVaster*) used in the water industry was then assessed using a sensitive cell culture method developed by Emilio Entrala and used by Professor Francis Derouin's team in the Denis Diderot's University Laboratory of Parasitology. The article published in FEMS Immunology and Medical Microbiology, a journal of the Federation of European Microbiological Societies, describes how replicate experiments successfully achieved inactivation rate of >99.998% with both reactors. These results confirm the remarkable efficacy of both polychromatic medium-pressure and monochromatic low-pressure UV lamps in conditions that are close to that of many small- or medium-size water distribution units. According to Dr. Cedric Feliers, who led the study conducted for the VEOLIA Research Center "These tests, made in near real conditions, confirm that these industrial UV reactors could prevent waterborne outbreaks and secure water supply to customers." Community Email This Article Comment On This Article Related Links Water News - Science, Technology and Politics
ADB sounds China water pollution warning Manila (AFP) Oct 18, 2007 Water pollution may already have reached "alarming" levels in China following its industrialisation over the last three decades, the Asian Development Bank said Thursday. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |