|
. | . |
|
by Staff Writers Knoxville TN (SPX) Jan 06, 2015
Diamonds are beautiful and enigmatic. Though chemical reactions that create the highly coveted sparkles still remain a mystery, a professor from the University of Tennessee, Knoxville, is studying a rare rock covered in diamonds that may hold clues to the gem's origins. The golf-ball sized chunk of rock contains more than 30,000 diamonds, each less than a millimeter in size (rendering them worthless), along with speckles of red and green garnet and other minerals. The rock was found in Russia's Udachnaya diamond mine in northern Siberia. The diamond company of Russia, ALROSA, loaned it to Earth and Planetary Sciences Professor Larry Taylor and a team of researchers from the Russian Academy of Sciences so they could study the rock to uncover the diamonds' genesis. Scientists believe that diamonds form at some 100 miles deep in the Earth's mantle and are carried to the surface by special volcanic eruptions. However, most mantle rocks crumble during this journey. This rock is one of only a few hundred recovered in which the diamonds are still in their original setting from within the Earth. "It is a wonder why this rock has more than 30,000 perfect teeny tiny octahedral diamonds--all 10 to 700 micron in size and none larger," said Taylor. "Diamonds never nucleate so homogeneously as this. Normally, they do so in only a few selective places and grow larger. It's like they didn't have time to coalesce into larger crystals." Taylor and his colleagues examined the sparkly chunk using a giant X-ray machine to study the diamonds and their relationships with associated materials. They also beamed electrons at the materials inside the diamonds--called inclusions--to study the chemicals trapped inside. This created two- and three-dimensional images which revealed a relationship between minerals. Analyses of nitrogen indicated the diamonds were formed at higher-than-normal temperatures over longer-than-normal times. The images also showed abnormal carbon isotopes for this type of rock, indicating it was originally formed as part of the crust of the Earth, withdrawn by tectonic shifts and transformed into the shimmery rock we see today. "These are all new and exciting results, demonstrating evidences for the birth mechanism of diamonds in this rock and diamonds in general," said Taylor. The findings were presented at the American Geophysical Union's annual conference in San Francisco in December and will be published in a special issue of Russian Geology and Geophysics this month.
Related Links Knoxville TN (SPX) Jan 06, 2015 Dirt, rocks and all the stuff we stand on firmly
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |