. | . |
Using statistics to predict rogue waves by Staff Writers Washington DC (SPX) Mar 15, 2016
Scientists have developed a mathematical model to derive the probability of extreme waves. This model uses multi-point statistics, the joint statistics of multiple points in time or space, to predict how likely extreme waves are. The results, published in the New Journal of Physics, demonstrate that evolution of these probabilities obey a well-known function, greatly reducing the complexity of the results. "It's common in science and engineering to consider noise and fluctuations as something we need to avoid or eliminate in order to gain the best results" explains Matthias Wachter, an author on the paper. "For us, understanding noise and fluctuations is helpful for understanding complex systems." 'Rogue' waves are large and spontaneous waves which occur in the open water, and can be extremely dangerous, even to large ships and ocean liners. They are typically defined by oceanographers as waves whose height is twice the 'significant wave height' - itself defined as the average of the largest third of the waves in the current sea state. "Multi-point statistics allows us to capture a high level of complexity, such as wave heights or turbulent air flows" continues Wachter. "A key point of our work is that we were able to reduce the complexity of these so that they obey the well-known Fokker-Planck equation." Sadly, it is unlikely that this approach could be applied to Tsunami-type events. "Typically, a Tsunami is the consequence of an isolated earthquake event" explains Wachter. "It is likely that their statistics differ significantly from common ocean waves, so this approach cannot capture them." Further work remains for the researchers to extend the range of these predictions to a scale of minutes or hours. They are also working on expanding their model to encompass atmospheric wind data. "This has tremendous practical relevance in wind energy applications, where knowing about an impending large gust of wind will help wind turbines adjust their operation accordingly" concludes Wachter. "But there is still a lot of research to do!" The researchers would like to acknowledge the support of the Volkswagen Foundation, and their fruitful collaboration with Norbert Hoffman and partners in the project "Extreme Ocean Gravity Waves". Research paper: "Oceanic El-Nino wave dynamics and climate networks" (Wang et al 2016 New J. Phys. 18 033021)
Related Links IOP Publishing Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |