. | . |
Vegetation matters by Staff Writers Santa Barbara CA (SPX) Aug 31, 2016
In California's Sierra Nevada mountains, as more precipitation falls in the form of rain rather than snow, and the snowpack melts earlier in spring, it's important for water managers to know when and how much water will be available for urban and agricultural needs and for the environment in general. While changing precipitation patterns can have a significant impact on stream flows in the Sierra Nevada mountains, a new study by UC Santa Barbara researchers indicates that shifts in vegetation type resulting from warming and other factors may have an equal or greater effect. Their findings appear in the journal PLOS One. "We found that vegetation change may have a greater impact on the amount of stream flow in the Sierra than the direct effects of climate warming," said lead author Ryan Bart, a postdoctoral researcher at UCSB's Bren School of Environmental Science and Management. Bart co-wrote the paper with Bren professor Naomi Tague and fire ecologist Max Moritz, an associate at UCSB's National Center for Ecological Analysis and Synthesis. As the climate continues to warm and produce more severe droughts, fires and tree die-off events across the western United States, the potential for widespread vegetation-type conversion is becoming increasingly plausible. Wildfire is a particularly important factor. Exacerbated by climate and drought, fires such as the 2013 Rim Fire in Yosemite National Park can destroy entire stands of forest, which may not return. In some cases, they may be replaced by shrubs, raising the question of whether such a shift in vegetation type will leave more or less water in nearby streams. The findings were generated using the Regional Hydro-Ecological Simulation System (RHESSys), a spatially distributed model of which Tague is the primary architect. Because the future composition of shrub lands and the distribution of shrub species in the Sierra Nevada is unknown, the researchers examined stream flows under multiple possible scenarios of vegetation-type conversion in two Sierra Nevada watersheds. The team focused on the lower montane zone - which ranges in altitude from 4,000 to 7,000 - because the trailing, lower edge of many forests is likely to be the most susceptible to vegetation-type conversion. While some forest-to-shrub land conversion scenarios resulted in higher stream flow, depending on factors such as the size and area covered by shrub leaves relative to tree leaves, Bart noted that a shrub-dominated landscape would not necessarily result in more water in stream. "Intuitively, you might think that shrubs would use less water than trees because they're smaller, but field work from a related study has shown this isn't always true," he explained. "Shrubs are adept at pulling water out of the soil, so that in some cases, a decent-sized shrub may use just as much water as a much taller tree. It is only when shrubs are much smaller than trees that we see less water used by vegetation and thus more stream flow." The researchers also found that increases in stream flow would be observed only during wet years. "During very dry years, it doesn't matter what vegetation you have on a landscape, whether a tall tree or a small shrub," Bart said. "Each vegetation type will be able to exploit all the available water." The goal of the study was not to specify how much water will be available in the watersheds. "It's a small-scale study of just two watersheds, but it's the first to examine what might be the implication of vegetation-type conversion on stream flow in the Sierra Nevada," said Tague. "Our results show that the hydrology and ecology communities need to collaborate to understand how mountain landscapes will change 50 or a 100 years from now in the Sierra or elsewhere," Bart said. "The results underscore the importance of accounting for changes in vegetation communities to accurately characterize future stream flow for the Sierra Nevada."
Related Links University of California - Santa Barbara Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |