Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Visualizing Biological Networks in 4D
by Katie Neith for Caltech News
Pasadena CA (SPX) Feb 15, 2013


A DNA structure as seen through the 4D electron microscope invented at Caltech. Credit: Zewail and Lorenz/Caltech

Every great structure, from the Empire State Building to the Golden Gate Bridge, depends on specific mechanical properties to remain strong and reliable. Rigidity-a material's stiffness-is of particular importance for maintaining the robust functionality of everything from colossal edifices to the tiniest of nanoscale structures.

In biological nanostructures, like DNA networks, it has been difficult to measure this stiffness, which is essential to their properties and functions. But scientists at the California Institute of Technology (Caltech) have recently developed techniques for visualizing the behavior of biological nanostructures in both space and time, allowing them to directly measure stiffness and map its variation throughout the network.

The new method is outlined in the February 4 early edition of the Proceedings of the National Academy of Sciences (PNAS).

"This type of visualization is taking us into domains of the biological sciences that we did not explore before," says Nobel Laureate Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics at Caltech, who coauthored the paper with Ulrich Lorenz, a postdoctoral scholar in Zewail's lab. "We are providing the methodology to find out-directly-the stiffness of a biological network that has nanoscale properties."

Knowing the mechanical properties of DNA structures is crucial to building sturdy biological networks, among other applications. According to Zewail, this type of visualization of biomechanics in space and time should be applicable to the study of other biological nanomaterials, including the abnormal protein assemblies that underlie diseases like Alzheimer's and Parkinson's.

Zewail and Lorenz were able to see, for the first time, the motion of DNA nanostructures in both space and time using the four-dimensional (4D) electron microscope developed at Caltech's Physical Biology Center for Ultrafast Science and Technology. The center is directed by Zewail, who created it in 2005 to advance understanding of the fundamental physics of chemical and biological behavior.

"In nature, the behavior of matter is determined by its structure-the arrangements of its atoms in the three dimensions of space-and by how the structure changes with time, the fourth dimension," explains Zewail.

"If you watch a horse gallop in slow motion, you can follow the time of the gallops, and you can see in detail what, for example, each leg is doing over time. When we get to the nanometer scale, that is a different story-we need to improve the spatial resolution to a billion times that of the horse in order to visualize what is happening."

Zewail was awarded the 1999 Nobel Prize in Chemistry for his development of femtochemistry, which uses ultrashort laser flashes to observe fundamental chemical reactions occurring at the timescale of the femtosecond (one millionth of a billionth of a second). Although femtochemistry can capture atoms and molecules in motion, giving the time dimension, it cannot concurrently show the dimensions of space, and thus the structure of the material.

This is because it utilizes laser light with wavelengths that far exceed the dimension of a nanostructure, making it impossible to resolve and image nanoscale details in tiny physical structures such as DNA .

To overcome this major hurdle, the 4D electron microscope employs a stream of individual electrons that scatter off objects to produce an image. The electrons are accelerated to wavelengths of picometers, or trillionths of a meter, providing the capability for visualizing the structure in space with a resolution a thousand times higher than that of a nanostructure, and with a time resolution of femtoseconds or longer.

The experiments reported in PNAS began with a structure created by stretching DNA over a hole embedded in a thin carbon film. Using the electrons in the microscope, several DNA filaments were cut away from the carbon film so that a three-dimensional, free-standing structure was achieved under the 4D microscope.

Next, the scientists employed laser heat to excite oscillations in the DNA structure, which were imaged using the electron pulses as a function of time-the fourth dimension. By observing the frequency and amplitude of these oscillations, a direct measure of stiffness was made.

"It was surprising that we could do this with a complex network," says Zewail. "And yet by cutting and probing, we could go into a selective area of the network and find out about its behavior and properties."

Using 4D electron microscopy, Zewail's group has begun to visualize protein assemblies called amyloids, which are believed to play a role in many neurodegenerative diseases, and they are continuing their investigation of the biomechanical properties of these networks. He says that this technique has the potential for broad applications not only to biological assemblies, but also in the materials science of nanostructures.

Funding for the research outlined in the PNAS paper, "Biomechanics of DNA structures visualized by 4D electron microscopy," was provided by the National Science Foundation and the Air Force Office of Scientific Research. The Physical Biology Center for Ultrafast Science and Technology at Caltech is supported by the Gordon and Betty Moore Foundation.

.


Related Links
Zewail Lab at Caltech
Physical Biology Center for Ultrafast Science and Technology at Caltech
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Biodiversity helps protect nature against human impacts
Guelph, Canada (SPX) Feb 15, 2013
"You don't know what you've got 'til it's collapsed." That's how University of Guelph integrative biologists might recast a line from an iconic folk tune for their new research paper warning about the perils of ecosystem breakdown. Their research, published as the cover story in Nature, suggests farmers and resource managers should not rely on seemingly stable but vulnerable single-crop mo ... read more


FLORA AND FAUNA
Aid trickles into tsunami-hit Solomons despite aftershocks

Smartphones, tablets help UW researchers improve storm forecasts

Rescuers struggle to aid Solomons quake victims

HDT Global Awarded Guardian Angel Air-Deployable Rescue Vehicle Contract

FLORA AND FAUNA
Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

3D Printing on the Micrometer Scale

Nextdoor renovates before taking on the world

FLORA AND FAUNA
New Zealand dolphin faces extinction, group warns

Nothing fishy about swimming with same-sized mates

Large water loss detected in Mideast river basins: study

Balancing Biodiversity And Development In Small Fishing Communities

FLORA AND FAUNA
Sunlight stimulates release of carbon dioxide from permafrost

Volcano location could be greenhouse-icehouse key

Features Of Southeast European Human Ancestors Influenced By Lack Of Episodic Glaciations

Polar bear researchers urge governments to act now and save the species

FLORA AND FAUNA
X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

Nitrogen from pollution, natural sources causes growth of toxic algae

Pioneering Finns share leftovers to cut waste

FLORA AND FAUNA
Shimmering water reveals cold volcanic vent in Antarctic waters

Cargo container research to improve buildings' ability to withstand tsunamis

Powerful aftershocks rattle Solomon Islands

Hoodoos - key to earthquakes?

FLORA AND FAUNA
Jane Goodall: chimp scientist turned activist

Plane carrying Guinea army delegation crashes in Liberia

Ghana extradites ex-military chief to I. Coast: security

Sudan president in Eritrea after Asmara mutiny: reports

FLORA AND FAUNA
UF researchers include humans in most comprehensive tree of life to date

The last Neanderthals of southern Iberia did not coexist with modern humans

Computer helping save lost languages

Archaic Native Americans built massive Louisiana mound in less than 90 days




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement