. | . |
Volcano analysis in real time by Staff Writers Potsdam (SPX) Sep 08, 2021
Explosive volcanic eruptions often announce themselves: The dynamic of gas and magma flows inside the mountain change noticeably before eruptions and cause, among other things, the rising and lowering of the volcano's surface, which is recorded by satellites. To better analyse and interpret such changes, an interdisciplinary team led by Binayak Ghosh and Mahdi Motagh from the German Research Centre for Geosciences Potsdam (GFZ) has further developed machine learning methods to detect, using satellite measurements, even very small surface deformations automatically. Their results were published in the "IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing". Their findings provide an important basis for analysing the growing amounts of satellite data on more than 1,500 active volcanoes worldwide virtually in near real time, and thus ultimately providing more precise warnings of eruptions. How to detect and interpret the signs of impending volcanic eruptions early and precisely is being researched at the GFZ with an interdisciplinary approach. "The assessment of volcanic activity is determined by various parameters," explains volcanologist Thomas Walter. "These include seismic measurements, observations of temperature, the composition of released gases - and the often very complex surface deformation." The latter is in the focus of the presented research.
The breathing of volcanoes Ground surface deformations occurring at volcanoes, however, are often only in the order a few millimetres to centimetres. In the satellite recordings, they are superimposed by fluctuations in physical characteristics of the ground surface or by atmospheric artefacts. The newly developed method of computer-assisted data analysis brings significant progress in the interpretation of satellite images. It was developed by Binayak Ghosh and Mahdi Motagh, head of the working group Radar and optical remote sensing for geohazards at the GFZ Remote Sensing and Geoinformatics section, in cooperation with Thomas Walter, head of the working group volcano-tectonics and -hazards at the GFZ Earthquake and Volcano Physics section, and colleagues from the GFZ, Leibniz University Hannover and the Eberhard Karls University Tubingen.
New machine learning approaches Ghosh and Motagh have now adopted a new approach to optimise previous ML algorithms. "Our approach is based on the application of the Independent Component Analysis (ICA), which tries to extract the latent deformation signals from the satellite measurements. The minimum spanning tree-based approach then compares the multiple iterations of this ICA algorithm and filters out those signals that are most likely to indicate actual surface displacements based on statistical significance." Field test on Mexico's Volcan de Colima - with additional insights Ghosh and Motagh tested their method on several data sets, including satellite images of the Volcan de Colima in western Mexico. Their algorithms detected several episodes of previously unnoticed deformation events. "It is possible that volcanoes rise and fall even more frequently than we previously knew," explains co-author Walter. "In our various case studies, we were able to detect signs of both newly occurring deformations and changes in ongoing deformation processes," adds Motagh. "Our study shows that the computer-assisted evaluation of satellite images using our new algorithms detects episodes of surface deformation much more precisely and reliably than before," concludes Ghosh. "Such a quasi-automated procedure is urgently needed to evaluate the constantly growing amount of observation data from the approximately 1500 active volcanoes," Walter emphasises.
Real-time analysis possible "The algorithms could reveal changing activity patterns of volcanoes at an early stage," Motagh explains. "This kind of model-based flagging gives us clues about potentially important volcanic events, especially harbingers of impending eruptions," Walter adds. "As a result, it enables decisions to be made in time on how to proceed." The automatic analysis and interpretation of the available satellite data can also help researchers to describe the periodic behaviour of volcanoes in more detail in the long term.
Research Report: "Automatic Detection of Volcanic Unrest Using Blind Source Separation With a Minimum Spanning Tree Based Stability Analysis"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |