. Earth Science News .
Warbling Whales Speak A Language All Their Own

To listen to Songs of the humpback whales recorded in Hawaii please go here
by Staff Writers
Cambridge MA (SPX) Mar 22, 2006
The songs of the humpback whale are among the most complex in the animal kingdom. Researchers have now mathematically confirmed that whales have their own syntax that uses sound units to build phrases that can be combined to form songs that last for hours.

Until now, only humans have demonstrated the ability to use such a hierarchical structure of communication. The research, published online in the March 2006 issue of the Journal of the Acoustical Society of America, offers a new approach to studying animal communication, although the authors do not claim that humpback whale songs meet the linguistic rigor necessary for a true language.

"Humpback songs are not like human language, but elements of language are seen in their songs," said Ryuji Suzuki, a Howard Hughes Medical Institute (HHMI) predoctoral fellow in neuroscience at Massachusetts Institute of Technology and first author of the paper.

With limited sight and sense of smell in water, marine mammals are more dependent on sound�which travels four times faster in water than air�to communicate. For six months each year, all male humpback whales in a population sing the same song during mating season. Thought to attract females, the song evolves over time.

Suzuki and co-authors John Buck and Peter Tyack applied the tools of information theory�a mathematical study of data encoding and transmission�to analyze the complex patterns of moans, cries, and chirps in the whales' songs for clues to the information being conveyed. Buck is an electrical engineer who specializes in signal processing and underwater acoustics at the University of Massachusetts Dartmouth, and Tyack is a biologist at Woods Hole Oceanographic Institution in Massachusetts.

Suzuki, who began the project as an electrical engineering undergraduate at the University of Massachusetts, Dartmouth, worked with Buck and Tyack to develop a computer program to break down the elements of the whale's song and assign an abstract symbol to each of those elements. Suzuki wanted to see if he could design a computer program that enabled scientists to classify the structure of the whales' songs.

He used the program to analyze structural characteristics of the humpback songs recorded in Hawaii. To measure a song's complexity, Suzuki analyzed the average amount of information conveyed per symbol. He then asked human observers who had no previous knowledge of the structure of the whale songs to classify them in terms of complexity, redundancy, and predictability. The computer-generated model and the human observers agreed that the songs are hierarchical, confirming a theory first proposed by biologists Roger Payne and Scott McVay in 1971.

Suzuki said that information theory also enabled the researchers to determine how much information can be conveyed in a whale song. Despite the "human-like" use of hierarchical syntax to communicate, Suzuki and his colleagues found that whale songs convey less than one bit of information per second. By comparison, humans speaking English generate 10 bits of information for each word spoken. "Although whale song is nothing like human language, I wouldn't be surprised if some marine mammals have the ability to communicate in a complex way," said Suzuki. "Given that the underwater environment is very different from our world, it is not surprising that they would communicate in rather a different way from land mammals."

The structure of the humpback whale song is repetitive and rigid. The whales repeat unique phrases made up of short and long segments to craft a song. There are multiple layers, or scales, of repetition, denoted as periodicities. One scale is made up of six units, while a longer one consists of 180-400 units. The combined periodicities give the song its hierarchical structure.

Suzuki compared his new technique for animal communication research with more traditional models, such as the first order Markov model that is used to analyze bird songs, which are often shorter and simpler in structure than humpback whale songs. The Markov model proved inadequate for the whale song's complex structure.

Information theory, in contrast, proved perfect for analyzing humpback whale songs because it provided a quantitative analysis of the complexity and structure of the songs. "Information theory was the right choice because it allows one to study the structure of humpback songs without knowing what they mean," said Suzuki.

"I hope that knowing the hierarchical structure in humpback songs will inform research in other fields, such as evolutionary biology," said Suzuki. The technique he developed is already being used by a postdoctoral fellow in Buck's laboratory to analyze recently recorded songs of humpback whales from Australia.

Related Links
Howard Hughes Medical Institute
Journal of the Acoustical Society of America

Demand For Whale Meat Declining In Japan
Tokyo, Japan (UPI) Feb 10, 2006
Whale meat, a cheap source of protein that helped Japan ward off malnutrition after World War II, has dropped in popularity.







  • Large Centrifuge Helps Researchers Mimic Effects Of Katrina On Levees
  • Louisiana Selects SGI For Storm Modeling And Visualization
  • Search For Katrina's Dead Stymied By Bureaucratic Wrangling
  • China Offers Bangladesh River Data For Flood Forecasts

  • Tiny 'Cages' That Trap Carbon Dioxide Could Help Stop Climate Change
  • Strong Storms Linked With Rising Sea Surface Temperatures
  • Snow Thickness Data Key To Understanding Polar Climate Wildlife Habitats
  • Greenhouse Theory Smashed By Biggest Stone

  • FluWrap: Deadly Strain Divides
  • Satellite Flood Mapping Service Strengthens Eastern France Civil Protection
  • Scientists Use Satellites To Detect Deep-Ocean Whirlpools
  • GeoEye Receives Additional Awards Totaling $13 Million From The NGA

  • NREL Highlights Leading Utility Green Power Programs
  • Journal Of Industrial Ecology Focuses On Eco-Efficiency
  • USC, Rice To Develop Bacteria-Powered Fuel Cells
  • Book Offers A Viable Alternative To Fossil Fuel

  • Ebola Test Urgent Amid Globalism
  • Minor Mutations In Avian Flu Virus Increase Chances Of Human Infection
  • Emerging Disease Risks Prompt Scientists To Call
  • Evolution In Action: Why Some Viruses Jump Species

  • Saving Vegetables Under Threat Of Extinction
  • Visualizing Viruses
  • Behavioral Studies Show UV Contributes To Marsupial Color Vision
  • How Flowers Changed The World

  • Hong Kong Pollution Leaves Tourists Choking
  • Reducing Soot Particles Is Associated With Longer Lives
  • Metabolites Of Pharmaceuticals Identified In Wastewater
  • Pollution Trackers Hit The Road To Pinpoint Airborne Culprits

  • Aggression-Related Gene Weakens Brain's Impulse Control Circuits
  • Aging Japan Building Robots To Look After Elderly
  • 'Wild' Play As A Child Breeds Respect For Environment In Adults
  • Most Human Chimp Differences Due To Gene Regulation Not Genes

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement