. | . |
Water, water everywhere - and it's weirder than you think by Staff Writers Tokyo, Japan (SPX) Feb 05, 2020
Researchers at The University of Tokyo have used computational methods and analysis of recent experimental data to demonstrate that water molecules take two distinct structures in the liquid state. The team investigated the scattering of X-ray photons through water samples and showed a bimodal distribution hidden under the first diffraction peak that resulted from tetrahedral and non-tetrahedral arrangements of water molecules. This work may have important implications throughout science, but especially with regard to living systems, like proteins and cell structures, which are strongly affected by their surrounding water molecules. Given the ubiquity of water on our planet and the central role it plays in all known life, it may be hard to believe that there is anything left to learn about this most familiar fluid. A simple molecule made up of just two hydrogen atoms and one oxygen; water still hides fundamental mysteries that remain to be unraveled. For example, water has unusually high melting and boiling points, and even expands when it freezes (unlike most liquids, which contract). These and other unusual properties make it very different from almost all other liquids, but also allow life as we know it to exist. The weirdness of water can be best understood by thinking about the very unique interactions between H2O molecules--the hydrogen bond. Water tends to form four hydrogen bonds with its four neighbors, which leads to tetrahedral arrangements of the neighbors. Such arrangements can be largely distorted under thermal fluctuations. However, whether the distortion leads to the coexistence of distinct tetrahedral and non-tetrahedral arrangements has remained controversial. Now, scientists at The University of Tokyo have combined computer simulations and the analysis of scattering experimental data to find the "structure factor" of water - the mathematical function that represents the paths of dispersed X-rays when they scatter off the hydrogen and oxygen atoms. The analysis showed two overlapping peaks hiding in the first diffraction peak of the structure factor. One of these peaks corresponded to the distance between oxygen atoms as in ordinary liquids, while the other indicated a longer distance, as in a tetrahedral arrangement. "The combination of new computational methods and analysis of recent X-ray scattering data allowed us to see what was not visible in previous work," first author of the study Rui Shi explains. This discovery may have huge implications across many scientific fields. Knowing the exact structural ordering of water is critical for a complete understanding of molecular biology, chemistry, and even many industrial applications. "It is very satisfying to be able to unravel the liquid structure of such a fundamental substance," senior author Hajime Tanaka says.
Research Report: "Direct Evidence in the Scattering Function for the Coexistence of Two Types of Local Structures in Liquid Water"
Bulgarians' patience runs dry over water crisis Pernik, Bulgaria (AFP) Jan 29, 2020 Forced to "live without water, in the 21st century, in a European Union country": Bulgarian Yana Stoyanova is not bemoaning climate change, but the incompetence of the authorities which has left some 100,000 people with an acute water shortage. Accountant Stoyanova does not live in an isolated backwater, but around 30 kilometres (19 miles) from the capital Sofia. She is at the sharp end of a crisis which has led to the environment minister being charged with mismanagement and forced to resign. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |