Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
Water's reaction with metal oxides opens doors for researchers
by Staff Writers
Madison WI (SPX) Aug 11, 2014


File image.

A multi-institutional team has resolved a long-unanswered question about how two of the world's most common substances interact.

In a paper published recently in the journal Nature Communications, Manos Mavrikakis, professor of chemical and biological engineering at the University of Wisconsin-Madison, and his collaborators report fundamental discoveries about how water reacts with metal oxides. The paper opens doors for greater understanding and control of chemical reactions in fields ranging from catalysis to geochemistry and atmospheric chemistry.

"These metal oxide materials are everywhere, and water is everywhere," Mavrikakis says. "It would be nice to see how something so abundant as water interacts with materials that are accelerating chemical reactions."

These reactions play a huge role in the catalysis-driven creation of common chemical platforms such as methanol, which is produced on the order of 10 million tons per year as raw material for chemicals production and for uses like fuel.

"Ninety percent of all catalytic processes use metal oxides as a support," Mavrikakis says. "Therefore, all of the reactions including water as an impurity or reactant or product would be affected by the insights developed."

Chemists understand how water interacts with many non-oxide metals, which are very homogeneous. Metal oxides are trickier: an occasional oxygen atom is missing, causing what Mavrikakis calls "oxygen defects." When water meets with one of those defects, it forms two adjacent hydroxyls - a stable compound comprised of one oxygen atom and one hydrogen atom.

Mavrikakis, assistant scientist Guowen Peng and Ph.D. student Carrie Farberow, along with researchers at Aarhus University in Denmark and Lund University in Sweden, investigated how hydroxyls affect water molecules around them, and how that differs from water molecules contacting a pristine metal oxide surface.

The Aarhus researchers generated data on the reactions using scanning tunneling microscopy (STM). The Wisconsin researchers then subjected the STM images to quantum mechanical analysis that decoded the resulting chemical structures, defining which atom is which.

"If you don't have the component of the work that we provided, there is no way that you can tell from STM alone what the atomic-scale structure of the water is when absorbed on various surfaces" Mavrikakis says.

The project yielded two dramatically different pictures of water-metal oxide reactions.

"On a smooth surface, you form amorphous networks of water molecules, whereas on a hydroxylated surface, there are much more structured, well-ordered domains of water molecules," Mavrikakis says.

In the latter case, the researchers realized that hydroxyl behaves as a sort of anchor, setting the template for a tidy hexameric ring of water molecules attracted to the metal's surface.

Mavrikakis' next step is to examine how these differing structures react with other molecules, and to use the research to improve catalysis. He sees many possibilities outside his own field.

"Maybe others might be inspired and look at the geochemistry or atmospheric chemistry implications, such as how these water cluster structures on atmospheric dust nanoparticles could affect cloud formation, rain and acid rain," Mavrikakis says.

Other researchers might also look at whether other molecules exhibit similar behavior when they come into contact with metal oxides, he adds.

"It opens the doors to using hydrogen bonds to make surfaces hydrophilic, or attracted to water, and to (template) these surfaces for the selective absorption of other molecules possessing fundamental similarities to water," Mavrikakis says. "Because catalysis is at the heart of engineering chemical reactions, this is also very fundamental for atomic-scale chemical reaction engineering."

While the research fills part of the foundation of chemistry, it also owes a great deal to state-of-the-art research technology.

"The size and nature of the calculations we had to do probably were not feasible until maybe four or five years ago, and the spatial and temporal resolution of scanning tunneling microscopy was not there," Mavrikakis says. "So it's advances in the methods that allow for this new information to be born."

.


Related Links
University of Wisconsin-Madison
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Third day of tap water drinking ban in US city
Washington (AFP) Aug 04, 2014
Hundreds of thousands of Toledo, Ohio residents entered a third day Monday unable to drink their tap water after officials warned that the supply was polluted. In a rare 3 am (0700 GMT) Monday press conference, Mayor Michael Collins said the ban, in place since Saturday, remains in effect, even though tests show the quality of the water is improving. "It's my decision to keep the status ... read more


WATER WORLD
Britain aborts second Iraq aid drop over safety fears

Chinese media keep to Beijing's script for quake reports

India calls off landslide rescue after 151 bodies found

Tibet bus accident kills 44 people, injures 11: Xinhua

WATER WORLD
USN Moderates CubeSat RF Communications Standards Meeting

IT outsourcing boom boosts struggling Bulgaria

NASA Engineer Set to Complete First 3-D Printed Space Cameras

Disney develops tool to design inflatable characters and structures

WATER WORLD
Man finds two-headed dolphin washed ashore in Turkey

Ancient shellfish remains rewrite 10,000-year history of El Nino cycles

Northern Pacific's tropical anoxic zone might shrink from climate change

Water's reaction with metal oxides opens doors for researchers

WATER WORLD
Chile's mega-quake triggered 'icequakes' in Antarctica

Megascale icebergs run aground

Sulfur signals in Antarctic snow reveal clues to climate, past and future

Enhanced international cooperation needed in Antarctica

WATER WORLD
Drought hits Central America's crops, cattle

Dhaka's residents fight back over vanishing green spaces

China holds six from OSI unit in food scandal: company

Ohio lawmakers hope fertilizer licensing helps curb algae growth

WATER WORLD
Floods kill 45 in eastern India: official

Indonesian girl swept away by 2004 tsunami reunited with parents

Floods hit blast-ravaged Taiwan city

Typhoon Halong leaves 10 dead in Japan: reports

WATER WORLD
UN tells DRCongo rebels to disarm or face military action

1,500 security forces deployed in Sierra Leone for Ebola quarantine

Kerry offers financial support to green African initiatives

US and African leaders turn to business at summit

WATER WORLD
Flores bones evidence of Down syndrome, not new species

6,500-year-old human skeleton found in museum storage

Engineering a protein to prevent brain damage from toxic agents

OkCupid admits toying with users to find love formula




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.