. Earth Science News .
DISASTER MANAGEMENT
What plants can teach us about oil spill clean-up, microfluidics
by Staff Writers
Los Angeles CA (SPX) Apr 11, 2018

For years, scientists have been inspired by nature to innovate solutions to tricky problems, even oil spills -- manmade disasters with devastating environmental and economic consequences. A new USC study takes a cue from leaf structure to fabricate material that can separate oil and water, which could lead to safer and more efficient oil spill clean-up methods.

For years, scientists have been inspired by nature to innovate solutions to tricky problems, even oil spills - manmade disasters with devastating environmental and economic consequences. A new USC study takes a cue from leaf structure to fabricate material that can separate oil and water, which could lead to safer and more efficient oil spill clean-up methods.

In addition, the material is capable of "microdroplet manipulation," or the transfer of miniature volumes of liquid. Droplet-based microfluidics is a tool used in various applications like cell cultures, chemical synthesis and DNA sequencing.

Using 3-D printing, Associate Professor Yong Chen and his research team at the Daniel J. Epstein School of Industrial and Systems Engineering at the USC Viterbi School of Engineering have successfully mimicked a biological phenomenon in plant leaves called "Salvinia effect."

Their study focuses on a floating fern native to South America called Salvinia molesta. The unique leaves are super-hydrophobic, meaning "water-fearing" and retain a surrounding air pocket when submerged in water due to the presence of water-resistant hairs.

"I think the reason the plant's surface is super-hydrophobic is because it lives on the water and requires air to survive," Yang Yang, a postdoctoral researcher on Chen's team, said. "If it weren't for the long-term evolution of this plant, the plant could be submerged in water and would die."

Water-repellent structure
On a microscopic level, the leaf hairs align in a structure resembling an egg-beater, or cooking whisk. Chen explains that Salvinia's leaf surface is comprised of this so-called "egg-beater" structure that is super-hydrophobic.

Using a method called immersed surface accumulation 3-D printing (ISA-3D printing), the research team successfully created the egg-beater microstructure in samples made from plastic and carbon nanotubes.

Chen explains that the method allowed the team to demonstrate the fabrication of a material with both super-hydrophobic and olephilic (oil-absorbing) properties that, when combined, generate capillary forces capable of highly efficient oil and water separation.

"We tried to create one functional surface texture that would be able to separate oil from water," Chen said. "Basically, we modified the surface of the materials by using a 3-D printing approach that helped us achieve some interesting surface properties."

The team has 3-D printed a prototype, citing a growing demand for materials that can separate oil and water mixtures efficiently in vast bodies of water. Eventually, they hope the technology can be applied to manufacture materials in large scale to accommodate massive oil spills in the ocean. Current methods require tremendous energy in the form of an electric field or mechanically-applied pressure.

Microfluidics application
"Salvinia effect" also has potential for liquid-handling technology that executes "microdroplet manipulation" - a breakthrough where the adhesion of liquid to a robotic arm can be tuned accordingly and result in non-loss transfer for very tiny amounts of liquid. The technique can be applied in myriad ways, some of which include droplet-based microreactors (devices used in chemical synthesis), nanoparticle synthesis, tissue engineering, drug discovery and drug delivery monitoring.

Xiangjia Li, a PhD student on Chen's team and co-first author of the study, says one example of high-performance microdroplet manipulation could lead to more efficient blood analyses for patients.

A robotic gripper could move to different stations and dispense microdroplets of blood that are then evenly mixed with different chemicals for various tests. In addition, the tests could be designed to control the ratio of chemical to droplet and result in significant conservation for source materials and chemical reagents.

"You can have a robotic arm with a gripper made to mimic 'Salvinia effect,'" Li said. "No matter which way you move the arm, the gripping force is so large that a droplet will stay attached."

Led by Chen, the research team also included Yang, Li, Professor Qifa Zhou, and graduate students Xuan Zheng and Zeyu Chen. Their study titled "3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation" has been published in the Vol. 30, March 2018 issue of Advanced Materials. The team also produced a video illustrating the technology.


Related Links
University of Southern California
Bringing Order To A World Of Disasters
A world of storm and tempest
When the Earth Quakes


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


DISASTER MANAGEMENT
BlackRock to exclude Walmart from some new funds over guns
New York (AFP) April 5, 2018
BlackRock will block Walmart and other large retailers that sell guns from some investment vehicles in response to rising demand from socially minded clients, the giant asset manager announced Thursday. BlackRock said a number of new funds will screen for major gun retailers as well as gun manufacturers. The company also plans to review several existing equity and bond exchange trade funds. The aim is "offering our clients more choice of products that exclude firearms manufacturers and/or retail ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

DISASTER MANAGEMENT
Trump to send thousands of troops to border as Mexico spat heats up

Arizona deploys first 225 National Guard members to Mexico border

BlackRock to exclude Walmart from some new funds over guns

After 'Trump Effect,' illegal Mexico border crossings rebound

DISASTER MANAGEMENT
What a mesh

Invisibility material created by UCI engineers

Creating a 2-D platinum magnet

Scientists create 'Swiss army knife' for electron beams

DISASTER MANAGEMENT
Talks to ease Egypt concerns over Nile dam fail: Sudan minister

Prince Charles backs 'blue economy' to save Barrier Reef

KAIST discloses the formation of burning ice in oceanic clay rich sediment

Hanging by a thread: Why bent fibers hold more water

DISASTER MANAGEMENT
Antarctica has experienced increased snowfall over the last 200 years

New technique more accurately reflects ponds on Arctic sea ice

Algae, impurities darken Greenland ice sheet and intensify melting

Wind, sea ice patterns point to climate change in western Arctic

DISASTER MANAGEMENT
In Cambodia, fears tarantula may go off the menu

Bats to blame for pig-killer virus in China: study

Hybrid swarm in global mega-pest

Treating women subsistence farmers for intestinal worms will boost food production

DISASTER MANAGEMENT
Hundreds take shelter as Fiji braces for another cyclone

Five injured after quake hits Japan

Chile raises alert over eruption threat at the Chillan volcano

Shaking up megathrust earthquakes with slow slip and fluid drainage

DISASTER MANAGEMENT
Benin, Niger back Chinese involvement in mega rail project

Five park rangers, driver killed in DR Congo's Virunga wildlife sanctuary

UN troops attacked in C.African capital after security sweep

Mali prisoner killings decried as 'summary executions'

DISASTER MANAGEMENT
Bonobos share and share alike

Inner ear provides clues to human dispersal

Why expressive brows might have mattered in human evolution

First human migration out of Africa much more geographically widespread









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.