. Earth Science News .
WATER WORLD
When it comes to water, you have to think global
by Aries Keck for GSFC News
Greenbelt MD (SPX) Apr 21, 2020

NASA's IMERG data showing world-wide precipitation on April 20, 2020.

Earth is a pale, blue dot when seen from space. Its blue color is due to our home planet being 71% covered in water. NASA monitors Earth's water from space, the skies, ground stations on land, ships sailing the seas and even with apps on mobile phones.

While Earth is so wet it looks blue from space, most of that water is saltwater. Only 2.5% of water on Earth is freshwater and nearly all of that water is frozen - locked up in polar ice caps, glaciers and other ice. The small amount of freshwater that remains is all that's available for all the ways we use water.

"All the water on Earth already exists. We can't make more," said Bradley Doorn, program manager for NASA Earth Applied Sciences' Water Resources program area. "We can only track it, predict it and protect it as it cycles around our world."

NASA tracks nearly every aspect of this water cycle - as precipitation falls from clouds; as groundwater; as water soaks into the soil; as it moves into rivers and lakes; as it's taken up by plants and used by animals and evaporates back into the atmosphere.

"Water is a precious resource on this planet, and one that NASA is at the cutting edge of monitoring," said Doorn.

The cyclical nature of freshwater moving around our world has led to the overarching science question that NASA is trying to answer about water on our world - where it is, when it is, and in what condition. To a finer and finer degree, NASA research scientists are determining how much and when freshwater is available worldwide.

As these core science questions are being asked and answered, NASA is also looking toward developing and strengthening new and innovative ways data are used to track both the use and quality of the world's freshwater. In addition, as the world warms due to climate change, NASA scientists are investigating how the world's water cycle is affected by and has effects on the Earth's climate.

NASA's Earth Science Division studies freshwater using data collected in many ways, including satellites, airborne missions and even information collected by volunteers. NASA scientists study water, in nearly all its aspects on Earth, as precipitation, ice and snow, in groundwater reserves and in lakes and rivers, just to name a few.

A few examples of the research focus NASA scientists take to studying water include ways to track water quality, determining water availability and predicting drought, measuring irrigation and water use for agriculture, and world-wide precipitation.

What Goes Up, Must Come Down
The amount of precipitation falling on Earth at any given time varies greatly from place to place, so having a satellite-level view provides more uniform observations around the globe because it includes data over the world's oceans and is more complete than most on-the-ground measurements.

In 2019 scientists released a worldwide precipitation data set that compiled more than 20 years of satellite and other data. It is based significantly on information collected by the joint NASA and Japan Aerospace Exploration Agency (JAXA) project the Global Precipitation Measurement mission (GPM) and an earlier, precursor NASA-JAXA satellite mission the Tropical Rainfall Measurement Mission (TRMM). This Integrated Multi-satellitE Retrievals for GPM (IMERG) also includes information from a constellation of other Earth-observing satellites, airborne campaigns and ground stations.

All told, the record compiles data from 1997 to the current day. These records include four-dimensional views of rain, snow, sleet and storms, how heavy the precipitation is and how it changes over time. While IMERG produces a higher accuracy product that takes time to process and prepare, a near-real-time summary of global precipitation is available every half-hour that is used for time-sensitive applications like weather forecasting and disaster recovery. This multiple-decade baseline of rain and snow data worldwide shows how precipitation may deviate from normal, informing models that predict crop yields, disease outbreaks and landslides.

Seeing Stressed Out Plants
One project currently working toward including IMERG data as a larger effort to monitor agriculture is led by Christopher Hain of NASA's Marshall Space Flight Center in

Huntsville, Alabama. He and his team have built a world-wide global agricultural monitoring tool that provides early drought warnings by looking at "vegetation stress."

About 31% of all fresh surface water in the U.S. is used for agriculture irrigation, according to the U.S. Geological Survey, and plants go under stress when they don't have

enough water. When a plant releases water from its leaves, in a process called "transpiration," it cools them. This allows farmers to track the temperature readings of a field over time as a way of determining the health of their crops. If a field is unusually warm, it shows the plants are under stress long before leaves fade and turn brown.

This plant stress is quantified in part by these temperature changes into the Evaporative Stress Index. It's used in many different products and is incorporated into the U.S. Drought Monitor, a map developed the U.S. Department of Agriculture (USDA). Updated on a weekly basis, it ranks drought conditions across the U.S. As part of a NASA Earth Applied Sciences-funded project, Hain's team is expanding the use of this data beyond the U.S. to a world-wide "Global Evaporative Stress Index."

In addition to the IMERG data, this index includes a plant temperature indicator taken from NASA's ECOsystem Spaceborne Thermal Radiometer on Space Station (ECOSTRESS) instrument, which was launched to the International Space Station in 2018. Also contributing to the index are land surface temperatures from many National Oceanic and Atmospheric Administration (NOAA) satellites, observations from the NASA's Terra and Aqua satellites and the NASA/NOAA Suomi National Polar Orbiting Partnership (Suomi NPP) satellite.

This index of plant stress also includes data from the Landsat series of satellites; the longest continuous record of Earth science data from space. Begun in 1972, Landsat is a partnership between NASA and the U.S. Geological Survey (USGS) and Landsat data is used in NASA Earth Applied Sciences water projects as varied as measuring from the stress on vineyards in California to tracking scarce water resources in remote areas of the Navajo Nation.

Managing Water in the West
In the drought-prone Western U.S., water is a particularly scarce resource, which is why in 2015 NASA's Earth Applied Sciences Water program area established the Western Water Applications Office (WWAO). It facilitates getting satellite and other NASA data into the hands of western state, local and federal water agencies.

"Managing water in the western United States is particularly challenging," says Indrani Graczyk, WWAO manager. "That's because most precipitation falls in winter and is stored in mountain snowpack, but must supply users throughout the long, dry summers.

One of many NASA programs that investigate the important connections between snow and water availability is the Airborne Snow Observatory. This multi-year NASA aircraft project began in April 2013 and was a collaboration between NASA's Jet Propulsion Laboratory (JPL) and the California Department of Water Resources. It created the first maps of the entire snowpack of two major mountain watersheds in California and Colorado, producing the most accurate measurements of how much water they hold, a boon to the millions of Americans relying on those water basins for their water supply.

The Airborne Snow Observatory project also made the first measurements of snow in the area created by surrounding mountains, known as a 'basin,' as well as on the mountains themselves. This understanding of precipitation in mountains provides data that are now being incorporated world-wide to help improve water management for the 1.5 billion people globally who rely on snow melt for water.

Data in the Palm of Your Hand
In addition to satellite and airborne missions, NASA is also using the power of citizen scientists to monitor the world's water resources. One example is NASA's Global

Learning and Observations to benefit the Environment Program (GLOBE) program. Begun in 1995, this worldwide program and brings together students, teachers, scientists and citizens and through its GLOBE Observer mobile phone app, users can upload information about cloud cover, rainfall depth and other information which is then relayed to scientific teams who use it as part of their research in monitoring water resources worldwide.

Another hand-held scientific resource is CyAN, an android mobile phone application that's part of the multi-agency Cyanobacteria Assessment Network, (CyAN). The network began in 2015 with a goal developing a uniform and systematic approach for identifying potentially harmful algal blooms using satellite and other data. While individual algae are microscopic, under the right conditions they can multiply and "bloom" and release harmful toxins that can sicken people and pets, contaminate drinking water and force closures of boating and swimming sites.

These blooms can be large enough to be seen both with the naked eye, and from space via images from Earth-observing satellites. As part of this ongoing, long-term mission, a mobile phone application now combines satellite information with user-uploaded data about potentially harmful algal blooms of cyanobacteria.

Developed with the U.S. Environmental Protection Agency (EPA), the mobile phone app, includes NASA supercomputing power, and provides weekly reports on the color and other water quality information of more than 2,000 lakes across the U.S. Users can choose particular lake and see a color-coded index of water quality. The app also allows users to submit data, turning each user's report into a data source for water quality managers to review and confirm the data.

While CyAN is one hand-held way to track water quality, NASA remote sensing data is incorporated into other water quality resources, for example NASA is refining the Freshwater Health Index with the non-profit group Conservation International.

This index views water as part of a system that also takes into account data on human population centers as well as, environmental and other data. In addition to creating resources like the index, NASA also trains people to use them. For example, the Earth Applied Sciences Capacity Building program area holds both in-person and remote training courses on the Freshwater Index, how to monitoring harmful algal blooms and many more courses on how to access and interpret Earth observation data.

Too Much and Too Little
While water quality is an issue, so is quantity. Having too much or too little water can be devastating. In addition to NASA's precipitation missions, two other key NASA

satellite missions have broken new ground in monitoring the world's water.

The Soil Moisture Active Passive (SMAP) satellite, launched in 2015, measures the amount of water in the top two inches (5 centimeters) of soil. This near-real-time data maps global soil moisture, providing links between Earth's water, energy and carbon cycles. For example, this data incorporated into a NASA software application called the Land Information System and with other resources, provides users with crucial information on soil saturation, drought forecasting and agriculture.

NASA also tracks water through the Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) mission. A partnership between NASA and the German Aerospace Center, GRACE-FO is a successor to the GRACE mission, which made observations from 2002 to 2017.

The GRACE-FO mission consists of two twin satellites that follow each other in orbit around the Earth and are separated by only about 137 miles (220 km). By constantly measuring the distance between them, they track changes in Earth's gravity field, which is influenced by differences in mass, such as when passing near and then over a mountain range. While these changes would be imperceptible to us, the extremely precise measurements of distance between the two satellites reveal gravity changes worldwide.

The data are used to construct monthly maps of the Earth's average gravity field, offering details of how mass, is moving around the planet, which on the scale of monthly is mostly attributable to water movement. Thus GRACE-FO data is able to be used to uncover changes in underground water storage, the amount of water in large lakes and rivers, root-zone soil moisture, ice sheets and glaciers, and sea level caused by the addition of water to the ocean. These discoveries provide a unique view of Earth's climate and have far-reaching benefits to society.

Water Data Everywhere
Despite all of our ways of tracking and monitoring the quality and quantity of water around our world, there is still much to learn about how to best watch the world's water, especially as climate change is shifting the water cycle and affecting water availability around the world.

NASA's satellite and modeling products provide a huge volume of valuable global water resources information, extending back for years across a broad range of areas (from local to global) and across many timescales (from hourly to decades), and while this information is used for ongoing scientific research, many of the resources are available in near-real-time which can make them useful for applications like responding to a hurricane or drought.

All NASA data are free, and openly available, allowing everyone to get access to the information - all with a goal of watching and protecting the water on our pale, blue planet.


Related Links
NASA Earth Applied Sciences' Water Resources program
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
'Minuscule traces' of virus in non-potable Paris water: city official
Paris (AFP) April 19, 2020
"Minuscule traces" of the new coronavirus have been found in Paris's non-potable water - such as the supply used for cleaning streets - but drinking water is at no risk of contamination, a city official said Sunday. The Paris water authority's laboratory detected tiny amounts of the virus in four of 27 samples collected from around the capital, leading to an immediate shutdown of the network as a precaution, Celia Blauel told AFP. Drinking water is supplied from a "totally independent" network ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Chinese help for virus gets wary reception in France

Mapping Chernobyl fires from space

EU haggles over virus rescue deal as WHO warns pandemic far from over

How millions of Favela dwellers abandoned by Brazilian Govt scramble to survive pandemic

WATER WORLD
Now metal surfaces can be instant bacteria killers

Astronauts, robots and the history of fixing and building things in space

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

Sensors woven into a shirt can monitor vital signs

WATER WORLD
How the blob came back

When it comes to water, you have to think global

What is fluid lensing

Whatever sea level rise brings, NASA will be there

WATER WORLD
Unusually clear skies drove record loss of Greenland ice in 2019

Alarms ring as Greenland ice loss causes 40% of 2019 sea level rise

Greenland to receive US development funds

The Arctic may influence Eurasian extreme weather events in just two to three weeks

WATER WORLD
DLR technologies for humanitarian aid

Turned-down temperatures boost crops' penchant for production

Hunter-gatherers developed culturally distinct cuisines 7,000 years ago

No time to waste to avoid future food shortages

WATER WORLD
Study suggests rainfall triggered 2018 Kilauea erruption

'Fourteen dead' in Yemen's flood-hit Aden

New study takes the pulse of a sleeping supervolcano

At least seven dead in Yemen flash floods

WATER WORLD
S.Africa to deploy 73,000 more troops for lockdown

US strike in Somalia kills Shabaab 'senior leader': Pentagon

Can sub-Saharan Africa achieve sustainable access to energy for all by 2030?

Madagascar president launches coronavirus 'remedy'

WATER WORLD
Genomes suggest parallel societies persisted through end of Neolithic

Examining heart extractions in ancient Mesoamerica

Long-overlooked arch is key to fuction, evolution of human foot

Analysis reveals prehistoric migration from Africa, Asia, Europe to Mediterranean









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.