Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
Where does water go when it doesn't flow
by Staff Writers
Salt Lake City UT (SPX) Jul 10, 2015


This view of Henry's Lake in Utah's Uinta Mountains shows several ways water on land reaches the atmosphere: It evaporates from lake waters, streams and soils and also is transpired or "exhaled" by trees and other plants. Such evaporation -- as well as from the ocean +- helps form clouds in the sky. In a new study in the journal Science, University of Utah researchers determined how much of the rain and snowmelt that falls on the land moves to the atmosphere from plant transpiration and evaporation from soil and surface waters. Image courtesy Stephen Good/University of Utah. For a larger version of this image please go here.

More than a quarter of the rain and snow that falls on continents reaches the oceans as runoff. Now a new study helps show where the rest goes: two-thirds of the remaining water is released by plants, more than a quarter lands on leaves and evaporates and what's left evaporates from soil and from lakes, rivers and streams.

"The question is, when rain falls on the landscape, where does it go?" says University of Utah geochemist Gabe Bowen, senior author of the study published today in the journal Science. "The water on the continents sustains all plant life, all agriculture, humans, aquatic ecosystems. But the breakdown - how much is used for those things - has always been unclear."

"Some previous estimates suggested that more water was used by plants than we find here," he adds. "It means either that plants are less productive globally than we thought, or plants are more efficient at using water than we assumed."

University of Utah hydrologist Stephen Good, the study's first author, says, "We've broken down the different possible pathways that water takes as it moves from rainfall [and snowfall] through soils, plants and rivers. Here we've found the proportions of water that returns to the atmosphere though plants, soils and open water."

The study used hydrogen isotope ratios of water in rain, rivers and the atmosphere from samples and satellite measurements to conclude that of all precipitation over land - excluding river runoff to the oceans--these amounts are released by other means:

+ 64 percent (55,000 cubic kilometers or 13,200 cubic miles) is released or essentially exhaled by plants, a process called transpiration. This is lower than estimated by recent research, which concluded plant transpiration accounted for more than 80 percent of water that falls on land and does not flow to the seas, Bowen says.

+ 6 percent (5,000 cubic kilometers or 1,200 cubic miles) evaporates from soils.

+ 3 percent (2,000 cubic kilometers or 480 cubic miles) evaporates from lakes, streams and rivers.

+ Previous research indicated the other 27 percent (23,000 cubic kilometers or 5,520 cubic miles) falls on leaves and evaporates, a process called interception. "It's important to understand the amount of water that goes through each of these pathways," Good says. "The most important pathway is the water that passes through plants because it is directly related to the productivity of natural and agricultural plants."

In another key finding, the researchers showed how much rainwater or snowmelt passing through soils is available for plants to use before it enters groundwater, lakes or streams. They found this "connectivity" is 38 percent: Only 38 percent of water entering groundwater, lakes or rivers interacts with soil, and the rest "moves rapidly into groundwater and lakes and rivers without spending much time in the soil," Bowen says.

"Lot of things happen in soils: nutrients, fertilizers, contaminants, various biological processes," he adds. "If water that goes to streams and groundwater moves rapidly through soil, it has less interaction with those processes. It means the soils and rest of the hydrologic cycle are somewhat separated. If we want to predict future climate change, hydrologic change and water quality, we need to account for the fact that most water doesn't interact with soils before it reaches streams and groundwater."

Significance: for agriculture, water supplies, climate
Good is a research assistant professor and Bowen is an associate professor of geology and geophysics at the University of Utah. They conducted the study with David Noone, of Oregon State University, where Good joins the faculty this fall. Funding came from the Department of Defense and the National Science Foundation, where two program directors praised the findings.

"These scientists found a way to answer basic questions about what happens to rainwater when it falls on land," says Eric DeWeaver, of NSF's Division of Atmospheric and Geospace Sciences. "The answers have important implications for water quality, plant productivity and peak streamflow. They give us a window on the inner workings of ecosystems and watersheds that's scientifically fascinating and useful."

"Getting what's called Earth's 'water balance' right is the key to understanding how our climate and ecosystems interact," says Henry Gholz, of NSF's Division of Environmental Biology. "This new analysis offers an estimate of hard-to-come-by global water measurements: water used by plants and water that evaporates from land. By knowing these amounts, we can better understand how ecosystems, including watersheds, work. In a decade when our reserves of freshwater are declining - in some cases to critically low levels - this information couldn't be timelier."

Good says that knowing how much water plants release or transpire is important "so that we can have an understanding how productive ecosystems and agriculture are, because how much water plants use determines how much food we get and how many leaves are on the trees."

Earth's water cycle is changing as climate warms, "so given shifts in future water availability, we also will see shifts in ecosystems and agriculture," Good says. "So understanding the connection between the water cycle and plant growth is important.

For example, when leaves release water, they consume carbon dioxide, the major climate-warming gas. Soil doesn't do that. So knowing how much water plants transpire "helps us understand how plants contribute to reducing global warming," Bowen says.

Evapotranspiration from land - in context
To put the new study in context, consider previous research showing every year about 496,000 cubic kilometers or 119,000 cubic miles of water evaporates from the oceans and continents and then becomes rain that falls over the oceans and continents. Of the global rainfall amount, 77 percent of precipitation falls over oceans and 23 percent over continents. Because some continental precipitation runs off to the seas, 83 percent of global evaporation comes from the oceans and only 17 percent from continents.

The new study deals with the fate of that 17 percent, which amounts to 85,000 cubic kilometers or 20,400 cubic miles of water. In other words, all the water that doesn't fall or flow into the oceans would fill 20,400 cubes of water 1 mile on each side. (The study excluded water evaporating to the atmosphere from snow because earlier research indicates it is less than 1 percent, Good says.)

How the study was performed
The study used data from two sources. First, a global network of isotopes and precipitation collected since the 1950s by the International Atomic Energy Agency. It includes measurements of deuterium - the heavy form or isotope of hydrogen. Deuterium is hydrogen-2 rather than the common isotope hydrogen-1. The IAEA data include measurements of deuterium in rainfall from about 500 stations around the world.

Second, the researchers used measurements made by NASA's Aura satellite of deuterium concentrations in water vapor near Earth's surface.

Each form of water has a distinct deuterium-hydrogen ratio, some of which Good and Bowen determined in a related study in another journal. Water vapor evaporated after being intercepted by leaves has deuterium-hydrogen ratios the same as rainwater. Water evaporated from lakes and streams has a relatively low deuterium-hydrogen ratio. Water evaporated from soil is similar, but the water left behind has a higher deuterium-hydrogen ratio, and thus so does water taken up and then transpired by plants, Bowen says.

The new study accounted for each of these isotopic signatures in a computer simulation of global movements of water between the land and atmosphere. By running the simulation thousands of times and testing the resulting estimates of river water and evapotranspiration isotope ratios against independent data, Good was able to show that a limited number of simulations matched the data. These gave a narrow range of estimates for how much water was released to the atmosphere by each pathway.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Utah
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Record-breaking heavy rainfall events increased under global warming
Potsdam, Germany (SPX) Jul 09, 2015
Heavy rainfall events setting ever new records have been increasing strikingly in the past thirty years. While before 1980, multi-decadal fluctuations in extreme rainfall events are explained by natural variability, a team of scientists of the Potsdam Institute for Climate Impact Research detected a clear upward trend in the past few decades towards more unprecedented daily rainfall events. ... read more


WATER WORLD
Nepal quake: Flat owners baulk at return to high-life

We're headed for Titanic-like crash, climate talks hear

Pope takes message to defend poor, environment to Bolivia

Amnesty urges EU to focus on rescuing migrants

WATER WORLD
Study: Violent video games offer stress release, but at a cost

Lower cost ultrasound degassing now possible in processing aluminum

Making new materials with micro-explosions: ANU media release

New technique enables magnetic patterns to be mapped in 3-D

WATER WORLD
Evidence from past suggests climate trends could yield 20-foot sea-level rise

Scientists to use baited cameras to count world shark population

Global trends show seabird populations dropped 70 percent since 1950s

Where does water go when it doesn't flow

WATER WORLD
Has US Already Lost in the Arctic

Soil water, microbes influence carbon in world's coldest desert

Retreating sea ice linked to changes in ocean circulation

Backward-moving glacier helps scientists explain glacial earthquakes

WATER WORLD
Omega-3 breakthrough could help fish farms: UK scientists

Research shows that genomics can match plant variety to climate stresses

Parched paddies strike Thai junta's economic weak spot

Climate change puts squeeze on bumblebees

WATER WORLD
Volcanic eruptions are important for world climate

Volcanic eruptions that changed human history

Earthquakes in western Solomon Islands have long history

China using animals to predict earthquakes: report

WATER WORLD
South Sudan: four years of freedom, 18 months of war

Burkina's leader mediates spat between presidential guard, PM

Water point 'bank machines' boost Kenya slums

Somali Shebab attack army camp killing several

WATER WORLD
Neuroscientists establish brain-to-brain networks in primates, rodents

Researchers find the organization of the brain is perfect

World's oldest man dies at 112 in Japan

Revised view of brain circuit reveals how we avoid powerful odors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.