. | . |
Where rivers jump course by Staff Writers Santa Barbara CA (SPX) May 27, 2022
Humans have always had a complex relationship with rivers, which both fostered and threatened civilizations throughout history. Just recall Osiris, the ancient Egyptian god of death and rebirth, who was inextricably linked with the annual flooding of the Nile. Large floods will sometimes force a river to jump course and forge a new path across the landscape, in rare and catastrophic events known as river avulsions. These events can wipe out entire cities along the largest waterways, yet they also create the fertile deltas that have nurtured many societies. A UC Santa Barbara-led team of scientists has just published the first global compilation of river avulsions in the journal Science. The study corroborates roughly a decade of theoretical and experimental work by the group, which fleshed out avulsions from what had been an understudied curiosity. "This dataset provides the first unambiguous test of the theory, which demonstrates that there are three distinct regimes of avulsions on fans and deltas," said co-author Vamsi Ganti, an assistant professor at UCSB's Department of Geography. "This is a long way from where we started," he added. "A decade ago, avulsions were thought to be these chaotic and stochastic events that were not very predictable." Avulsions' rarity and elusiveness had mostly kept researchers in the dark. Before this paper, scientists had observed only a handful of them. From those few case studies, they began building a theory of where avulsions occur using experiments and computational modeling. A river may jump course only once a decade, once a century, or even less. So scientists must monitor a river for a long time to get any useful data. However, satellite imagery allowed the team to swap large spans of time for large swaths of space. "Although avulsions are very rare, when you're looking at practically every single delta on Earth, you're going to get lucky on a few of them," said co-author Austin Chadwick, a postdoctoral scholar at University of Minnesota. The team got lucky 113 times while combing the satellite data from 1973 to 2020 and historical maps. "Instead of having these few, deeply studied sites, we now have a representative sample of everywhere on Earth for the last 50 years."
Fan avulsions
Backwater-scaled delta avulsions This second group covered 50 of the dataset's avulsions. These avulsions are found on low sloping deltas along some of the world's largest waterways, like the Orinoco, Yellow, Nile and Mississippi Rivers. Most of the group's previous case studies fit this category.
Extreme sediment load delta avulsions "The third regime had an avulsion length that was, on average, 14 times greater than the river's backwater length," Ganti said. This could stretch to over 50 times the backwater length in some of the most extreme examples. The team first documented this behavior in a 2020 paper on Malagasy rivers. "But now we know it's not just a weird case that we saw in Madagascar," said Chadwick, who will join Ganti's Surface Processes group at UCSB in summer 2022. "It's a third regime of avulsions," added Ganti. In fact, it accounts for 40% of the delta avulsions in the global dataset.
Dynamic riverbeds Rivers in the second and third regimes are found in relatively flat deltaic landscapes, so other factors control where sedimentation leads to an avulsion. In flat landscapes, a river's current slows down as it approaches the sea or a lake downstream, allowing sediment to build up. Sediment deposition is interrupted by floods, which cause erosion that travels upstream like a reverse domino effect. Over many years, deposition during low flows combines with waves of erosion during floods to fill the channel at a particular location, triggering an avulsion. The key difference between the rivers in the second and third regime is how far the waves of erosion travel during floods. The group's previous work suggested that erosion during floods is often limited to a river's backwater zone, leading to backwater-scaled avulsions - the avulsions in the second regime. However, if the wave travels quickly enough, and the floods last long enough, then a river can experience this enhanced sedimentation extremely far inland, leading to the third avulsion regime. The group's numerical models suggested that rivers in the third regime could be out there, but it took them years to come across any examples. The team had focused on big waterways, like the Mississippi and Yellow Rivers. It would take a flood event lasting centuries for an erosional wave to travel the entire backwater length of major rivers like those. In contrast, it might take only a few days to weeks in some of the steep, silt-bedded rivers in Madagascar. The global dataset revealed that the extreme examples from Madagascar were far from mere outliers: Two in five avulsions on deltas fell into this category.
Humans and rivers under climate change The team can now use their updated theory to predict avulsion locations, a matter of grave importance. Previously, scientists and officials might have assumed that locations upstream of the backwater zone were safe. "But now we know that there is this other type of avulsion on deltas where you're not safe," Chadwick said. What's more, climate and land-use change can push avulsions inland on rivers under both delta regimes. The authors previously found that rising sea level and longer floods can shift avulsion locations upstream of their historic locations. That means that even avulsions confined to the backwater zone could occur farther upstream. "That is problematic, because 'a little bit upstream' on the Mississippi River is tens to hundreds of kilometers," Ganti said. "It's not something trivial." Agriculture, development and resource extraction can also impact avulsion location. "If you change land use - and therefore the amount of sediment supplied to certain rivers - you can take a river that is currently experiencing backwater-scaled avulsions and shift it into the high sediment supply-modulated avulsions category," said Ganti. This is the regime that can jump course far upstream. "This study makes clear how sensitive avulsion location on deltas is to changes in sea level, sediment load, and flood duration and intensity ... all of which are subject to change as climate changes globally and more rivers are dammed, controlled and manipulated by human development," said first author Sam Brooke, a former postdoctoral scholar at UC Santa Barbara. This new framework allows the team to predict a potentially hazardous inland migration of a river's preferred avulsion location. The team is currently looking at the global satellite record to develop new metrics for characterizing river mobility. They intend to use the observations to characterize the factors that drive other types of river mobility, besides avulsions. They also plan to investigate avulsion frequency. "The question that we've answered here is 'where' avulsions occur, but we haven't really dug into 'when,'" Ganti said. However, both are equally important to understand. The group is excited by their future prospects and proud of the progress they've made so far. "It's wonderful to see how far this has come," Ganti exclaimed. "Between modeling, experiments and remote sensing, it's truly a case where we picked a problem and approached it from every possible angle."
Research Report:Where rivers jump course
Iconic Iran river threatened by droughts, diversions Isfahan, Iran (AFP) May 24, 2022 The famed river bridges of the Iranian city of Isfahan are a beloved tourist draw - but much of the time their stone arches span just sand and rocks, not water. Drought and upstream water diversions have seen the Zayandeh Rood, "fertile river" in Persian, run dry since 2000, with only rare exceptions. Sitting on a quay with two friends, 60-year-old Jalal Mirahmadi gazed with melancholy at the riverbed, which became the site of a farmers' protest late last year. "When I was a child, the wa ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |