. Earth Science News .
Tibetan Plateau Tells Tale Of Colliding Continents And Earth's Interior

India and Asia began colliding 50 million years ago as a result of plate tectonics, a large-scale geologic force that slowly moves the continents around the Earth's surface. The collision took place in an area that once may have resembled the tropical Indonesian island of Sumatra, and it produced the Tibetan Plateau. Today, the plateau stretches for 190,000 square miles at an elevation of approximately 16,000 feet.
by Staff Writers
Chicago IL (SPX) Feb 09, 2006
Geologists have learned that the height of the Tibetan Plateau, a vast, elevated region of central Asia sometimes called "the roof of the world," has remained remarkably constant for at least 35 million years.

David Rowley from the University of Chicago and Brian Currie of Miami University in Ohio report their finding in the Feb. 9 issue of the journal Nature.

Before their last expedition to Tibet, the geologists expected to find evidence that the plateau was rising 35 million years ago, the result of large-scale geologic forces grinding India and Asia against one another. They found instead that the plateau has stood at its current high elevation for at least 35 million years.

The best explanation for Rowley and Currie's finding: the plateau has widened progressively northward as the Earth's crust thickened. "This explanation is at odds with a popular theory that has survived since the 1980s," said geological oceanographer Chris Beaumont of Dalhousie University in Halifax, Nova Scotia, Canada.

India and Asia began colliding 50 million years ago as a result of plate tectonics, a large-scale geologic force that slowly moves the continents around the Earth's surface. The collision took place in an area that once may have resembled the tropical Indonesian island of Sumatra, and it produced the Tibetan Plateau. Today, the plateau stretches for 190,000 square miles at an elevation of approximately 16,000 feet.

"It looks not a whole lot different in places from Kansas," said Rowley, Professor and Chairman of the Geophysical Sciences Department at Chicago. "You could convince yourself that you're in Kansas, except that you're breathing a little too hard."

According to a popular theory, both the Earth's crust--the planet's outermost solid layer--and the upper portion of the mantle layer that lies below the crust thicken as the continents collide. Then the crust containing the plateau would have "bobbed up," Beaumont explained, while the mantle fell away and sank deep into the Earth.

Rowley and Currie's research, which is funded by the National Science Foundation, supports the idea that the collision has deformed the crust, but not the mantle. "The bottom of the crust is weak and any attempt to increase the elevation increases the stress on the bottom of the crust, and that crust is now capable of flowing," Rowley explained.

The Nature paper is based on a technique that Rowley and a colleague developed in the late 1990s to determine the elevation of ancient land surfaces. "It turns out that elevation is one of the most sensitive monitors of large-scale processes happening within the Earth," he said.

The technique relies on precise measurement of oxygen isotopes, different varieties of oxygen atoms that are found in rocks formed at various elevations. Water vapor derived from the oceans displays a well-defined isotopic composition that changes in a predictable way as air masses rise, cool and condense with elevation.

As precipitation seeps into the soil, it becomes incorporated into nodules of calcium carbonate, a chemical compound found in rocks around the world. An oxygen isotopic analysis of these nodules reveals the elevation at which they were created, as Rowley and his University of Chicago colleague Ray Pierrehumbert reported in 2001.

The technique is accurate to within approximately 2,000 feet, and it is especially sensitive at elevations of three to five kilometers (9,900 to 16,500 feet). "For asking questions about the height of the Himalayas, the height of Tibet, the height of the Andes, it's terrific," Rowley said. "But if you go to small mountain ranges or small elevation differences, you're probably not going to be able to say much with confidence."

Previous efforts aimed at reconstructing the elevation history of mountain ranges depended on comparing tree species that live today at various elevations with the species found in the distant past as indicated by fossilized leaves and pollen. But temperature, rainfall and climate change can influence the distribution of tree species, along with elevation. "It's not always clear which one is the driver," Rowley said.

As for the Tibetan Plateau, Rowley plans to examine even older rocks to see if he can take a scientific snapshot of the area as it began to rise. From this, scientists will be better able to answer a critical question: how fast does the concentration of heat-generating radioactive elements in thickening crust limit its strength?

"Some people had earlier argued that it took, 10, 20, 30 million years before you got enough heat production to limit that strength," Rowley said, an argument that his data are beginning to support.

"The significance of this research should not be underestimated," Beaumont said. "It demonstrates how a critical observation has the potential to advance our understanding of continental deformation."

Related Links
University of Chicago

Mountain Ranges Rise Dramatically Faster Than Expected
Rochester NY (SPX) Jan 27, 2006
Two new studies by a University of Rochester researcher show that mountain ranges rise to their height in as little as two million years - several times faster than geologists have always thought. Each of the findings came from two pioneering methods of measuring ancient mountain elevations, and the results are in tight agreement.







  • Storm-Ravaged New Orleans Seeks To Reverse Social Ills
  • US Military To End Pakistan Relief Operation
  • Tsunami Victims' Rights Abused?
  • Disaster Convention Warned On Urbanisation Risk

  • Constructal Theory Predicts Global Climate Patterns In Simple Way
  • Global Warming Is Most Widespread In 1,200 Years UK Study Finds
  • Medieval Diaries Point To Hot Spots Due To Global Warming
  • Frozen Methane Chunks Not Responsible For Abrupt Increases In Atmospheric Methane

  • NASA Awards Colorado Satellite Observation Grants
  • Converging Satellites Unlock Sudden Demise Of Hurricane Lili
  • Satellites Support Businesses Working For Sustainable Development
  • Keeping New York City "Cool" Is The Job Of NASA's "Heat Seekers"

  • MIT Researchers Fired Up About Battery Alternative
  • Saft Wins Contract To Supply LI Cells For Eurostar Sats
  • No Change In India Energy Policy
  • Europe Seeks To Drive Biofuel Use To New Levels

  • Bird Flue Hits Africa
  • 1,500 Cholera Cases In Flood-Hit Mozambique
  • Deadly Meningitis Outbreaks In Drought-Stricken Kenya, Uganda
  • Hong Kong Steps Up Bird Flu Searches

  • Introduced Predators Throw A Wrench In The Food Web
  • Dozens Of New Species In 'Lost World' Of West New Guinea
  • Scientists Sequence Complete Genome Of Woolly Mammoth
  • Antarctic Krill Provide Carbon Sink In Southern Ocean

  • Toxic Slick To Reach Japan In Spring, Russian Officials Warn
  • Indian Environment Watchdog Split Over French Asbestos Warship
  • Global Initiative To Limit Chemical Hazards Agreed In Dubai
  • China Vows Public Disclosure On Environmental Disasters

  • New Analysis Shows Three Human Migrations Out Of Africa
  • Brain Changes Significantly After Age Eighteen
  • Blue Light May Fight Fatigue
  • Study Suggests Why Neanderthals Vanished

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement